Bisectors $AI$ and $CI$ meet the circumcircle of triangle $ABC$ at points $A_1, C_1$ respectively. The circumcircle of triangle $AIC_1$ meets $AB$ at point $C_0$; point $A_0$ is defined similarly. Prove that $A_0, A_1, C_0, C_1$ are collinear.
2024 Sharygin Geometry Olympiad
First (Correspondence) Round
Three different collinear points are given. What is the number of isosceles triangles such that these points are their circumcenter, incenter and excenter (in some order)?
Let $ABC$ be an acute-angled triangle, and $M$ be the midpoint of the minor arc $BC$ of its circumcircle. A circle $\omega$ touches the side $AB, AC$ at points $P, Q$ respectively and passes through $M$. Prove that $BP + CQ = PQ$.
The incircle $\omega$ of triangle $ABC$ touches $BC, CA, AB$ at points $A_1, B_1$ and $C_1$ respectively, $P$ is an arbitrary point on $\omega$. The line $AP$ meets the circumcircle of triangle $AB_1C_1$ for the second time at point $A_2$. Points $B_2$ and $C_2$ are defined similarly. Prove that the circumcircle of triangle $A_2B_2C_2$ touches $\omega$.
Points $A', B', C'$ are the reflections of vertices $A, B, C$ about the opposite sidelines of triangle $ABC$. Prove that the circles $AB'C', A'BC',$ and $A'B'C$ have a common point.
A circle $\omega$ and two points $A, B$ of this circle are given. Let $C$ be an arbitrary point on one of arcs $AB$ of $\omega$; $CL$ be the bisector of triangle $ABC$; the circle $BCL$ meet $AC$ at point $E$; and $CL$ meet $BE$ at point $F$. Find the locus of circumcenters of triangles $AFC$.
Restore a bicentral quadrilateral if two opposite vertices and the incenter are given.
Let $ABCD$ be a quadrilateral $\angle B = \angle D$ and $AD = CD$. The incircle of triangle $ABC$ touches the sides $BC$ and $AB$ at points $E$ and $F$ respectively. Prove that the midpoints of segments $AC, BD, AE,$ and $CF$ are concyclic.
Let $ABCD$ ($AD \parallel BC$) be a trapezoid circumscribed around a circle $\omega$, which touches the sides $AB, BC, CD, $ and $AD$ at points $P, Q, R, S$ respectively. The line passing through $P$ and parallel to the bases of the trapezoid meets $QR$ at point $X$. Prove that $AB, QS$ and $DX$ concur.
Let $\omega$ be the circumcircle of triangle $ABC$. A point $T$ on the line $BC$ is such that $AT$ touches $\omega$. The bisector of angle $BAC$ meets $BC$ and $\omega$ at points $L$ and $A_0$ respectively. The line $TA_0$ meets $\omega$ at point $P$. The point $K$ lies on the segment $BC$ in such a way that $BL = CK$. Prove that $\angle BAP = \angle CAK$.
Let $M, N$ be the midpoints of sides $AB, AC$ respectively of a triangle $ABC$. The perpendicular bisector to the bisectrix $AL$ meets the bisectrixes of angles $B$ and $C$ at points $P$ and $Q$ respectively. Prove that the common point of lines $PM$ and $QN$ lies on the tangent to the circumcircle of $ABC$ at $A$.
The bisectors $AA_1, CC_1$ of a triangle $ABC$ with $\angle B = 60^{\circ}$ meet at point $I$. The circumcircles of triangles $ABC, A_1IC_1$ meet at point $P$. Prove that the line $PI$ bisects the side $AC$.
Can an arbitrary polygon be cut into isosceles trapezoids?
The incircle $\omega$ of triangle $ABC$, right angled at $C$, touches the circumcircle of its medial triangle at point $F$. Let $OE$ be the tangent to $\omega$ from the midpoint $O$ of the hypotenuse $AB$, distinct from $AB$. Prove that $CE = CF$.
The difference of two angles of a triangle is greater than $90^{\circ}$. Prove that the ratio of its circumradius and inradius is greater than $4$.
Let $AA_1, BB_1, $ and $CC_1$ be the bisectors of a triangle $ABC$. The segments $BB_1$ and $A_1C_1$ meet at point $D$. Let $E$ be the projection of $D$ to $AC$. Points $P$ and $Q$ on sides $AB$ and $BC$ respectively are such that $EP = PD, EQ = QD$. Prove that $\angle PDB_1 = \angle EDQ$.
Let $ABC$ be a non-isosceles triangle, $\omega$ be its incircle. Let $D, E, $ and $F$ be the points at which the incircle of $ABC$ touches the sides $BC, CA, $ and $AB$ respectively. Let $M$ be the point on ray $EF$ such that $EM = AB$. Let $N$ be the point on ray $FE$ such that $FN = AC$. Let the circumcircles of $\triangle BFM$ and $\triangle CEN$ intersect $\omega$ again at $S$ and $T$ respectively. Prove that $BS, CT, $ and $AD$ concur.
Let $AA_1, BB_1, CC_1$ be the altitudes of an acute-angled triangle $ABC$; $I_a$ be its excenter corresponding to $A$; $I_a'$ be the reflection of $I_a$ about the line $AA_1$. Points $I_b', I_c'$ are defined similarily. Prove that lines $A_1I_a', B_1I_b', C_1I_c'$ concur.
A triangle $ABC$, its circumcircle, and its incenter $I$ are drawn on the plane. Construct the circumcenter of $ABC$ using only a ruler.
Lines $a_1, b_1, c_1$ pass through the vertices $A, B, C$ respectively of a triange $ABC$; $a_2, b_2, c_2$ are the reflections of $a_1, b_1, c_1$ about the corresponding bisectors of $ABC$; $A_1 = b_1 \cap c_1, B_1 = a_1 \cap c_1, C_1 = a_1 \cap b_1$, and $A_2, B_2, C_2$ are defined similarly. Prove that the triangles $A_1B_1C_1$ and $A_2B_2C_2$ have the same ratios of the area and circumradius (i.e. $\frac{S_1}{R_1} = \frac{S_2}{R_2}$, where $S_i = S(\triangle A_iB_iC_i)$, $R_i = R(\triangle A_iB_iC_i)$)
A chord $PQ$ of the circumcircle of a triangle $ABC$ meets the sides $BC, AC$ at points $A', B'$ respectively. The tangents to the circumcircle at $A$ and $B$ meet at a point $X$, and the tangents at points $P$ and $Q$ meet at point $Y$. The line $XY$ meets $AB$ at a point $C'$. Prove that the lines $AA', BB'$ and $CC'$ concur.
A segment $AB$ is given. Let $C$ be an arbitrary point of the perpendicular bisector to $AB$; $O$ be the point on the circumcircle of $ABC$ opposite to $C$; and an ellipse centred at $O$ touch $AB, BC, CA$. Find the locus of touching points of the ellipse with the line $BC$.
A point $P$ moves along a circle $\Omega$. Let $A$ and $B$ be two fixed points of $\Omega$, and $C$ be an arbitrary point inside $\Omega$. The common external tangents to the circumcircles of triangles $APC$ and $BCP$ meet at point $Q$. Prove that all points $Q$ lie on two fixed lines.
Let $SABC$ be a pyramid with right angles at the vertex $S$. Points $A', B', C'$ lie on the edges $SA, SB, SC$ respectively in such a way that the triangles $ABC$ and $A'B'C'$ are similar. Does this yield that the planes $ABC$ and $A'B'C'$ are parallel?
Final Round
Grade 8
A circle $\omega$ centered at $O$ and a point $P$ inside it are given. Let $X$ be an arbitrary point of $\omega$, the line $XP$ and the circle $XOP$ meet $\omega$ for a second time at points $X_1$, $X_2$ respectively. Prove that all lines $X_1X_2$ are parallel.
Let $CM$ be the median of an acute-angled triangle $ABC$, and $P$ be the projection of the orthocenter $H$ to the bisector of $\angle C$. Prove that $MP$ bisects the segment $CH$.
Let $AD$ be the altitude of an acute-angled triangle $ABC$ and $A'$ be the point on its circumcircle opposite to $A$. A point $P$ lies on the segment $AD$, and points $X$, $Y$ lie on the segments $AB$, $AC$ respectively in such a way that $\angle CBP = \angle ADY$, $\angle BCP = \angle ADX$. Let $PA'$ meet $BC$ at point $T$. Prove that $D$, $X$, $Y$, $T$ are concyclic.
A square with side $1$ is cut from the paper. Construct a segment with length $1/2024$ using at most $20$ folds. No instruments are available. It is allowed only to fold the paper and to mark the common points of folding lines.
The vertices $M$, $N$, $K$ of rectangle $KLMN$ lie on the sides $AB$, $BC$, $CA$ respectively of a regular triangle $ABC$ in such a way that $AM = 2$, $KC = 1$. The vertex $L$ lies outside the triangle. Find the value of $\angle KMN$.
A circle $\omega$ touched lines $a$ and $b$ at points $A$ and $B$ respectively. An arbitrary tangent to the circle meets $a$ and $b$ at $X$ and $Y$ respectively. Points $X'$ and $Y'$ are the reflections of $X$ and $Y$ about $A$ and $B$ respectively. Find the locus of projections of the center of the circle to the lines $X'Y'$.
A convex quadrilateral $ABCD$ is given. A line $l \parallel AC$ meets the lines $AD$, $BC$, $AB$, $CD$ at points $X$, $Y$, $Z$, $T$ respectively. The circumcircles of triangles $XYB$ and $ZTB$ meet for the second time at point $R$. Prove that $R$ lies on $BD$.
Two polygons are cut from the cardboard. Is it possible that for any disposition of these polygons on the plane they have either common inner points or only a finite number of common points on the boundary?
Grade 9
Let $H$ be the orthocenter of an acute-angled triangle $ABC$; $A_1, B_1, C_1$ be the touching points of the incircle with $BC, CA, AB$ respectively; $E_A, E_B, E_C$ be the midpoints of $AH, BH, CH$ respectively. The circle centered at $E_A$ and passing through $A$ meets for the second time the bisector of angle $A$ at $A_2$; points $B_2, C_2$ are defined similarly. Prove that the triangles $A_1B_1C_1$ and $A_2B_2C_2$ are similar.
Points $A, B, C, D$ on the plane do not form a rectangle. Let the sidelengths of triangle $T$ equal $AB+CD$, $AC+BD$, $AD+BC$. Prove that the triangle $T$ is acute-angled.
Let $(P, P')$ and $(Q, Q')$ be two pairs of points isogonally conjugated with respect to a triangle $ABC$, and $R$ be the common point of lines $PQ$ and $P'Q'$. Prove that the pedal circles of points $P$, $Q$, and $R$ are coaxial.
For which $n > 0$ it is possible to mark several different points and several different circles on the plane in such a way that: — exactly $n$ marked circles pass through each marked point; — exactly $n$ marked points lie on each marked circle; — the center of each marked circle is marked?
Let $ABC$ be an isosceles triangle $(AC = BC)$, $O$ be its circumcenter, $H$ be the orthocenter, and $P$ be a point inside the triangle such that $\angle APH = \angle BPO = \pi /2$. Prove that $\angle PAC = \angle PBA = \angle PCB$.
The incircle of a triangle $ABC$ centered at $I$ touches the sides $BC, CA$, and $AB$ at points $A_1, B_1, $ and $C_1$ respectively. The excircle centered at $J$ touches the side $AC$ at point $B_2$ and touches the extensions of $AB, BC$ at points $C_2, A_2$ respectively. Let the lines $IB_2$ and $JB_1$ meet at point $X$, the lines $IC_2$ and $JC_1$ meet at point $Y$, the lines $IA_2$ and $JA_1$ meet at point $Z$. Prove that if one of points $X, Y, Z$ lies on the incircle then two remaining points also lie on it.
Let $P$ and $Q$ be arbitrary points on the side $BC$ of triangle ABC such that $BP = CQ$. The common points of segments $AP$ and $AQ$ with the incircle form a quadrilateral $XYZT$. Find the locus of common points of diagonals of such quadrilaterals.
Let points $P$ and $Q$ be isogonally conjugated with respect to a triangle $ABC$. The line $PQ$ meets the circumcircle of $ABC$ at point $X$. The reflection of $BC$ about $PQ$ meets $AX$ at point $E$. Prove that $A, P, Q, E$ are concyclic.
Grade 10
The diagonals of a cyclic quadrilateral $ABCD$ meet at point $P$. The bisector of angle $ABD$ meets $AC$ at point $E$, and the bisector of angle $ACD$ meets $BD$ at point $F$. Prove that the lines $AF$ and $DE$ meet on the median of triangle $APD$.
For which greatest $n$ there exists a convex polyhedron with $n$ faces having the following property: for each face there exists a point outside the polyhedron such that the remaining $n - 1$ faces are seen from this point?
Let $BE$ and $CF$ be the bisectors of a triangle $ABC$. Prove that $2EF \leq BF + CE$.
Let $I$ be the incenter of a triangle $ABC$. The lines passing through $A$ and parallel to $BI, CI$ meet the perpendicular bisector to $AI$ at points $S, T$ respectively. Let $Y$ be the common point of $BT$ and $CS$, and $A^*$ be a point such that $BICA^*$ is a parallelogram. Prove that the midpoint of segment $YA^*$ lies on the excircle of the triangle touching the side $BC$.
The incircle of a right-angled triangle $ABC$ touches the hypothenuse $AB$ at point $T$. The squares $ATMP$ and $BTNQ$ lie outside the triangle. Prove that the areas of triangles $ABC$ and $TPQ$ are equal.
A point $P$ lies on one of medians of triangle $ABC$ in such a way that $\angle PAB =\angle PBC =\angle PCA$. Prove that there exists a point $Q$ on another median such that $\angle QBA=\angle QCB =\angle QAC$.
Let $ABC$ be a triangle with $\angle A=60^\circ$; $AD$, $BE$, and $CF$ be its bisectors; $P, Q$ be the projections of $A$ to $EF$ and $BC$ respectively; and $R$ be the second common point of the circle $DEF$ with $AD$. Prove that $P, Q, R$ are collinear.
The common tangents to the circumcircle and an excircle of triangle $ABC$ meet $BC, CA,AB$ at points $A_1, B_1, C_1$ and $A_2, B_2, C_2$ respectively. The triangle $\Delta_1$ is formed by the lines $AA_1, BB_1$, and $CC_1$, the triangle $\Delta_2$ is formed by the lines $AA_2, BB_2,$ and $CC_2$. Prove that the circumradii of these triangles are equal.