Problem

Source: Sharygin Correspondence Round 2024 P20

Tags: geometry, isogonals, circumcircle



Lines $a_1, b_1, c_1$ pass through the vertices $A, B, C$ respectively of a triange $ABC$; $a_2, b_2, c_2$ are the reflections of $a_1, b_1, c_1$ about the corresponding bisectors of $ABC$; $A_1 = b_1 \cap c_1, B_1 = a_1 \cap c_1, C_1 = a_1 \cap b_1$, and $A_2, B_2, C_2$ are defined similarly. Prove that the triangles $A_1B_1C_1$ and $A_2B_2C_2$ have the same ratios of the area and circumradius (i.e. $\frac{S_1}{R_1} = \frac{S_2}{R_2}$, where $S_i = S(\triangle A_iB_iC_i)$, $R_i = R(\triangle A_iB_iC_i)$)