A segment $AB$ is given. Let $C$ be an arbitrary point of the perpendicular bisector to $AB$; $O$ be the point on the circumcircle of $ABC$ opposite to $C$; and an ellipse centred at $O$ touch $AB, BC, CA$. Find the locus of touching points of the ellipse with the line $BC$.
The key point is
Lemma: Let $\mathcal E$ be an ellipse centred at $O$. Two points $A, B$ are chosen on $\mathcal E$. The tangents to $\mathcal E$ at $A, B$ meet at a point $X$. Then $XO$ bisects segment $AB$. In particular, $\triangle XAO {}$ and $\triangle XBO$ have the same area.
Proof: Affine transform into a circle.
Let's return to the main problem now.
[asy][asy]/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(15cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -368.5625926152787, xmax = 1121.2506999064312, ymin = -349.586248253878, ymax = 326.455330449013; /* image dimensions */
pen zzttff = rgb(0.6,0.2,1);
draw((456.67750860203154,-57.17715508396357)--(468.20715990040446,-74.2186190737169)--(485.2486238901578,-62.68896777534398)--(473.71897259178485,-45.647503785590665)--cycle, linewidth(1.6) + zzttff);
draw((556.200217195542,-130.84147716338492)--(544.6705658971691,-113.8000131736316)--(527.6291019074158,-125.3296644720045)--(539.1587532057887,-142.37112846175782)--cycle, linewidth(2) + zzttff);
/* draw figures */
draw(circle((263.4137289679373,39.80426071872997), 227.0028624325864), linewidth(0.8));
draw((264.5024591913606,-187.1959908650256)--(473.71897259178485,-45.647503785590665), linewidth(0.8));
draw((264.5024591913606,-187.1959908650256)--(53.937822839803744,-47.660842633322), linewidth(0.8));
draw(circle((578.6642600297802,-45.144169073657835), 104.94649446873247), linewidth(0.8)); draw(shift((264.5024591913605,-187.1959908650256))*rotate(-179.7252022053201)*xscale(289.06743251828084)*yscale(140.54343410065127)*unitcircle, linewidth(0.8) + zzttff);
draw((-10.571163986038627,-145.00772278881698)--(262.32499874451395,266.8045123024856), linewidth(0.8));
draw((262.32499874451395,266.8045123024856)--(539.1587532057887,-142.37112846175782), linewidth(0.8));
draw((53.937822839803744,-47.660842633322)--(683.6095474677754,-44.640834361725), linewidth(0.8));
draw((683.6095474677754,-44.640834361725)--(539.1587532057887,-142.37112846175782), linewidth(0.8));
draw((539.1587532057887,-142.37112846175782)--(263.82839771579427,-46.65417320945633), linewidth(0.8));
draw((262.32499874451395,266.8045123024856)--(264.5024591913606,-187.1959908650256), linewidth(0.8));
/* dots and labels */
dot((53.937822839803744,-47.660842633322),linewidth(2pt) + dotstyle);
label("$A$", (34.92850744268443,-49.87771479735962), NE * labelscalefactor);
dot((473.71897259178485,-45.647503785590665),linewidth(2pt) + dotstyle);
label("$B$", (484.0063423629655,-39.20847897851916), NE * labelscalefactor);
dot((262.32499874451395,266.8045123024856),linewidth(2pt) + dotstyle);
label("$C$", (257.04259858036124,275.0490124127817), NE * labelscalefactor);
dot((264.5024591913606,-187.1959908650256),linewidth(2pt) + dotstyle);
label("$O$", (255.10273752239027,-209.9162520799665), NE * labelscalefactor);
dot((263.82839771579427,-46.65417320945633),linewidth(2pt) + dotstyle);
label("$D$", (246.37336276152087,-65.39660326112757), NE * labelscalefactor);
dot((539.1587532057887,-142.37112846175782),linewidth(2pt) + dotstyle);
label("$E$", (521.8336329933995,-161.41972563069172), NE * labelscalefactor);
dot((683.6095474677754,-44.640834361725),linewidth(2pt) + dotstyle);
label("$D'$", (692.5414060948455,-47.93785373938863), NE * labelscalefactor);
dot((-10.571163986038627,-145.00772278881698),linewidth(2pt) + dotstyle);
label("$F$", (-25.20718535441584,-146.87076769590925), NE * labelscalefactor);
dot((401.4935754607915,-94.51265083560709),linewidth(2pt) + dotstyle);
label("$M$", (389.9230810513731,-83.82528331185199), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy][/asy]
Suppose the ellipse $\mathcal E$ touches the sides at $D, E, F$ respectively.
Claim: $CE = CF$ and $D$ is the midpoint of $AB$.
Proof: Using the Lemma on $E, F$ we obtain that $CO$ bisects $EF$; which implies that $CE = CF$, since $CO$ is the angle bisector of $\angle ECF$. Since $CE = CF$, it follows that $EF \parallel AB$. Consider line $CD$. It's pole wrt $\mathcal E$ is the intersection of lines $AB, EF$. Since this lies at infinity, it follows that $CD$ passes through the center of $\mathcal E$, that is, $C, D, O$ are collinear. This implies that $D$ is the midpoint of $AB$.
Let $D'$ denote the reflection of $D$ over $B$ (note that this is a FIXED point, since $D$ is fixed (at the midpoint of $AB$) as well)
Since $BO$ bisects $DE$, some simple homothety arguments centred at $D$ with factor $2$ easily show that we have $BE \parallel ED'$. In particular, $E$ varies on the circle with diameter $BD'$. It is easy to see that all points on this circle except the degenerate cases $B, D'$ are achievable as well.
To conclude, the locus is the circle $(BD')$ where $D'$ is the point on ray $AB$ with $D'B/D'A = 1/3$.
Name the touching point with $BC$ as $P$.
Since the reflection in $CO$ preserve globally the set of $ AB , BC, CA,O$ then it is a symmetry axis of the ellipse thus the tangency point is at the midpoint of $AB$ say $I$ and the line joining the touching points of the ellipse with $CA,CB$ is perpendicular to $ OC$; let it cuts $OC$ at point say $H$ .
Let $I'$ be the reflection of $I$ in $O$
consider $B'$ the intersection of $CB$ with the perpendicular to $OC$ at $I'$; $J$ the intersection of $I'P$ and $IB$
we have $(C,H,I,I')=-1$ and also $I'(I,J,B,\infty _{ IB})=(C,P,B,B')-1$ so $B$ is midpoint of $IJ$ thus the point $J$ is fixed but $OB\perp CB $ & $ OB\parallel PJ$ hence $PJ\perp PB $ therefore $P$ is on circle the circle of diameter $BJ$
Best regards.
RH HAS
PROF65 wrote:
Name the touching point with $BC$ as $P$.
Since the reflection in $CO$ preserve globally the set of $ AB , BC, CA,O$ then it is a symmetry axis of the ellipse thus the tangency point is at the midpoint of $AB$ say $I$ and the line joining the touching points of the ellipse with $CA,CB$ is perpendicular to $ OC$; let it cuts $OC$ at point say $H$ .
Let $I'$ be the reflection of $I$ in $O$
consider $B'$ the intersection of $CB$ with the perpendicular to $OC$ at $I'$; $J$ the intersection of $I'P$ and $IB$
we have $(C,H,I,I')=-1$ and also $I'(I,J,B,\infty _{ IB})=(C,P,B,B')-1$ so $B$ is midpoint of $IJ$ thus the point $J$ is fixed but $OB\perp CB $ & $ OB\parallel PJ$ hence $PJ\perp PB $ therefore $P$ is on circle the circle of diameter $BJ$
Best regards.
RH HAS
Hi, don't you need to show that there is exactly one such ellipse before you can claim that $CO$ is an axis of symmetry of the ellipse?
Quote:
Hi, don't you need to show that there is exactly one such ellipse before you can claim that $CO$ is an axis of symmetry of the ellipse?
I think it ' s obvious since we know 5 tangents (take the symmetry wrt to $O$ of two of the aforementioned tangents t) define uniquely a conic