Let $ABCD$ be a quadrilateral $\angle B = \angle D$ and $AD = CD$. The incircle of triangle $ABC$ touches the sides $BC$ and $AB$ at points $E$ and $F$ respectively. Prove that the midpoints of segments $AC, BD, AE,$ and $CF$ are concyclic.
Problem
Source: Sharygin Correspondence Round 2024 P8
Tags: geometry, quadrilateral
06.03.2024 20:26
Let $M_1$ be midpoint of $AC$ and $M_2$ be midpoint of $BD$ and $M_3$ of $FC$ and $M_4$ of $AE$ and $M_6$ be midpoint of $AB$ and $M_5$ be midpoint of $BC$ . it suffices to show $$\angle{M_4M_1M_3}=\angle{M_4M_2M_3}$$ we have $M_1M_3||BA$ and $M_1M4||BC$ then $\angle{M_3M_1C}=\angle{BAC}$ and $\angle{M_4M_1A}=\angle{BCA}$ that implies $$\angle{M_4M_1M_3}=180-\angle{BAC}-\angle{BCA}=\angle{ABC}$$ Claim: $\angle{M_4M_2M_6}=\angle{M_5M_2M_3}$ observe that $M_5M_3=\frac{BF}{2}=\frac{BE}{2}=M_6M_4$ [tangent from same point] and $M_2M_5=\frac{DC}{2}=\frac{AD}{2}=M_6M_2$ and $\angle{M_3M_5B}=180-\angle{FBC}$ and $\angle{BM_5M_2}=\angle{BCD}$ then we have $$\angle{M_3M_5M_2}=\angle{BCD}-(180-\angle{ABC})=\angle{ABC}+\angle{BCD}-180$$ similarly $$\angle{M_4M_6M_2}=180-\angle{BAD}-\angle{ABC}=180-\angle{BAD}-\angle{ADC}=\angle{ABC}+\angle{BCD}-180$$[sum of angles of a quadrilateral is 360] hence $M_3M_5M_2$ and $M_4M_6M_2$ are congruent by $SAS$ congruence. so $\angle{M_5M_2M_3}=\angle{M_6M_2M_4}$ then its easy to see $\angle{M_4M_2M_3}=\angle{M_6M_2M_5}-\angle{M_5M_2M_3}+\angle{M_6M_2M_4}=\angle{M_6M_2M_5}=\angle{BM_2M_5}+\angle{BM_2M_6}$ as $M_2M_6||AD$ and $M_2M_5||BC$ so $\angle{BM_2M_5}=\angle{BDC}$ and $\angle{BM_2M_6}=\angle{BDA}$ hence $$\angle{M_4M_2M_3}=\angle{BDA}+\angle{BDC}=\angle{ADC}=\angle{ABC}=\angle{M_4M_1M_3}$$
07.03.2024 13:02
All angle are consider in mod 180 refer as Directed Angles :- \measuredangle. Let $P,Q,R,T,M,N$ be midpoint of $AC,BD,AE,CF,BC,BA$ respectively. From midpoint theorem $NQ \parallel AD$ and $MQ \parallel CD$ with $DA=DC \Rightarrow QM=QN$. As $\Box BNPM$ is parallelogram $\measuredangle{CDA}=\measuredangle{MQN}=\measuredangle{NBM}=\measuredangle{NPM}$ Hence $N,M,P,Q$ are cyclic. Claim: $\triangle RNQ \cong \triangle TMQ$ We will prove $\measuredangle{RNQ}=\measuredangle{TMQ}$ Note $\measuredangle{ANR}=\measuredangle{B},\measuredangle{ANQ}=\measuredangle{BNQ}=\measuredangle{BAD}$ hence $\Rightarrow $ $$\measuredangle{RNQ}=\measuredangle{ANQ}-\measuredangle{ANR}=\measuredangle{BAD}-\measuredangle{B}$$ and similarly $$\measuredangle{TMQ}=\measuredangle{QMC}-\measuredangle{TMC}=\measuredangle{B}-\measuredangle{DCB}$$ Now its well know property in $\triangle ABC$$\measuredangle{BAC}+\measuredangle{ACB}=\measuredangle{ABC}=\measuredangle{B}$\newline $$\measuredangle{TMQ}-\measuredangle{RNQ}=2\measuredangle{B}-(\measuredangle{BAC}+\measuredangle{CAD}+\measuredangle{ACB}+\measuredangle{DCA})=2\measuredangle{B}-(2\measuredangle{B})=0$$ hence we get $\measuredangle{RNQ}=\measuredangle{TMQ}$ from $AE=AF=2NR=2MT$ we prove our claim. Claim give us $\measuredangle{NQR}=\measuredangle{MQT} \Rightarrow \measuredangle{MQN}=\measuredangle{TQR}=\measuredangle{MPN}=\measuredangle{TPR}$ Hence $P,Q,R,T$ are cyclic. [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(14.494939289035129cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -0.31637341588029005, xmax = 14.178565873154838, ymin = -5.314763973316116, ymax = 2.259013546191498; /* image dimensions */ pen yqqqyq = rgb(0.5019607843137255,0.,0.5019607843137255); pen qqwuqq = rgb(0.,0.39215686274509803,0.); draw(arc((7.253742750879799,1.828224578227354),0.2576114802553637,-144.59016996634097,-52.47835888656762)--(7.253742750879799,1.828224578227354)--cycle, linewidth(0.) + red); draw(arc((6.295480124253005,-4.383281958043297),0.2576114802553637,41.51377464900452,133.64319923891605)--(6.295480124253005,-4.383281958043297)--cycle, linewidth(0.) + red); /* draw figures */ draw((3.152289416389089,-1.0875857760032765)--(9.705691711259178,-1.3647197038957901), linewidth(0.4)); draw((7.253742750879799,1.828224578227354)--(3.152289416389089,-1.0875857760032765), linewidth(0.4)); draw((7.253742750879799,1.828224578227354)--(9.705691711259178,-1.3647197038957901), linewidth(0.4)); draw((3.152289416389089,-1.0875857760032765)--(6.295480124253005,-4.383281958043297), linewidth(0.4)); draw((6.295480124253005,-4.383281958043297)--(9.705691711259178,-1.3647197038957901), linewidth(0.4)); draw((3.152289416389089,-1.0875857760032765)--(8.014706207593658,0.8372928919318768), linewidth(0.4)); draw((9.705691711259178,-1.3647197038957901)--(6.235442802823634,1.1042935006052375), linewidth(0.4)); draw((7.253742750879799,1.828224578227354)--(6.295480124253005,-4.383281958043297), linewidth(0.4)); draw((5.203016083634444,0.37031940111203876)--(6.774611437566402,-1.2775286899079716), linewidth(0.4) + yqqqyq); draw((8.479717231069488,0.23175243716578198)--(6.774611437566402,-1.2775286899079716), linewidth(0.4) + yqqqyq); draw((5.583497811991373,-0.12514644203569986)--(6.774611437566402,-1.2775286899079716), linewidth(0.4)); draw((6.774611437566402,-1.2775286899079716)--(7.970567257041406,-0.13021310164527633), linewidth(0.4)); draw((5.203016083634444,0.37031940111203876)--(6.428990563824133,-1.2261527399495333), linewidth(0.4) + qqwuqq); draw((6.428990563824133,-1.2261527399495333)--(8.479717231069488,0.23175243716578198), linewidth(0.4) + qqwuqq); draw(circle((6.777125950435706,-0.0836684697470635), 1.1943485902663675), linewidth(0.4)); /* dots and labels */ dot((3.152289416389089,-1.0875857760032765),dotstyle); label("$A$", (3.0755110741486646,-0.9439558583168237), NE * labelscalefactor); dot((7.253742750879799,1.828224578227354),dotstyle); label("$B$", (7.2917523009947836,1.9155315725176836), NE * labelscalefactor); dot((9.705691711259178,-1.3647197038957901),dotstyle); label("$C$", (9.790583659471812,-1.3131989800161745), NE * labelscalefactor); dot((6.295480124253005,-4.383281958043297),dotstyle); label("$D$", (6.450221465493929,-4.413123792422352), NE * labelscalefactor); dot((8.014706207593658,0.8372928919318768),linewidth(4.pt) + dotstyle); label("$E$", (8.07317379110272,0.919433848863621), NE * labelscalefactor); dot((6.235442802823634,1.1042935006052375),linewidth(4.pt) + dotstyle); label("$F$", (6.038043097085347,1.1598712304352914), NE * labelscalefactor); dot((6.428990563824133,-1.2261527399495333),linewidth(4.pt) + dotstyle); label("$P$", (6.3128286760244015,-1.4849399668530818), NE * labelscalefactor); dot((6.774611437566402,-1.2775286899079716),linewidth(4.pt) + dotstyle); label("$Q$", (6.810877537851438,-1.442004720143855), NE * labelscalefactor); dot((5.583497811991373,-0.12514644203569986),linewidth(4.pt) + dotstyle); label("$R$", (5.643038827360456,0.026380717311702804), NE * labelscalefactor); dot((7.970567257041406,-0.13021310164527633),linewidth(4.pt) + dotstyle); label("$T$", (8.081760840444565,-0.44590699648979243), NE * labelscalefactor); dot((8.479717231069488,0.23175243716578198),linewidth(4.pt) + dotstyle); label("$M$", (8.588396751613448,0.2067087534904555), NE * labelscalefactor); dot((5.203016083634444,0.37031940111203876),linewidth(4.pt) + dotstyle); label("$N$", (4.981836028038356,0.404210888352899), NE * labelscalefactor); dot((38.03612046364697,23.712071191313328),linewidth(4.pt) + dotstyle); label("$G$", (-0.31637341588029005,2.259013546191498), NE * labelscalefactor); dot((35.69924268819972,-35.21369507206871),linewidth(4.pt) + dotstyle); label("$H$", (-0.31637341588029005,2.259013546191498), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy]
08.03.2024 21:55
Om245 wrote: All angle are consider in mod 180 refer as Directed Angles :- \measuredangle. Let $P,Q,R,T,M,N$ be midpoint of $AC,BD,AE,CF,BC,BA$ respectively. From midpoint theorem $NQ \parallel AD$ and $MQ \parallel CD$ with $DA=DC \Rightarrow QM=QN$. As $\Box BNPM$ is parallelogram $\measuredangle{CDA}=\measuredangle{MQN}=\measuredangle{NBM}=\measuredangle{NPM}$ Hence $N,M,P,Q$ are cyclic. Claim: $\triangle RNQ \cong \triangle TMQ$ We will prove $\measuredangle{RNQ}=\measuredangle{TMQ}$ Note $\measuredangle{ANR}=\measuredangle{B},\measuredangle{ANQ}=\measuredangle{BNQ}=\measuredangle{BAD}$ hence $\Rightarrow $ $$\measuredangle{RNQ}=\measuredangle{ANQ}-\measuredangle{ANR}=\measuredangle{BAD}-\measuredangle{B}$$ and similarly $$\measuredangle{TMQ}=\measuredangle{QMC}-\measuredangle{TMC}=\measuredangle{B}-\measuredangle{DCB}$$ Now its well know property in $\triangle ABC$$\measuredangle{BAC}+\measuredangle{ACB}=\measuredangle{ABC}=\measuredangle{B}$\newline $$\measuredangle{TMQ}-\measuredangle{RNQ}=2\measuredangle{B}-(\measuredangle{BAC}+\measuredangle{CAD}+\measuredangle{ACB}+\measuredangle{DCA})=2\measuredangle{B}-(2\measuredangle{B})=0$$ hence we get $\measuredangle{RNQ}=\measuredangle{TMQ}$ from $AE=AF=2NR=2MT$ we prove our claim. Claim give us $\measuredangle{NQR}=\measuredangle{MQT} \Rightarrow \measuredangle{MQN}=\measuredangle{TQR}=\measuredangle{MPN}=\measuredangle{TPR}$ Hence $P,Q,R,T$ are cyclic. [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(14.494939289035129cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -0.31637341588029005, xmax = 14.178565873154838, ymin = -5.314763973316116, ymax = 2.259013546191498; /* image dimensions */ pen yqqqyq = rgb(0.5019607843137255,0.,0.5019607843137255); pen qqwuqq = rgb(0.,0.39215686274509803,0.); draw(arc((7.253742750879799,1.828224578227354),0.2576114802553637,-144.59016996634097,-52.47835888656762)--(7.253742750879799,1.828224578227354)--cycle, linewidth(0.) + red); draw(arc((6.295480124253005,-4.383281958043297),0.2576114802553637,41.51377464900452,133.64319923891605)--(6.295480124253005,-4.383281958043297)--cycle, linewidth(0.) + red); /* draw figures */ draw((3.152289416389089,-1.0875857760032765)--(9.705691711259178,-1.3647197038957901), linewidth(0.4)); draw((7.253742750879799,1.828224578227354)--(3.152289416389089,-1.0875857760032765), linewidth(0.4)); draw((7.253742750879799,1.828224578227354)--(9.705691711259178,-1.3647197038957901), linewidth(0.4)); draw((3.152289416389089,-1.0875857760032765)--(6.295480124253005,-4.383281958043297), linewidth(0.4)); draw((6.295480124253005,-4.383281958043297)--(9.705691711259178,-1.3647197038957901), linewidth(0.4)); draw((3.152289416389089,-1.0875857760032765)--(8.014706207593658,0.8372928919318768), linewidth(0.4)); draw((9.705691711259178,-1.3647197038957901)--(6.235442802823634,1.1042935006052375), linewidth(0.4)); draw((7.253742750879799,1.828224578227354)--(6.295480124253005,-4.383281958043297), linewidth(0.4)); draw((5.203016083634444,0.37031940111203876)--(6.774611437566402,-1.2775286899079716), linewidth(0.4) + yqqqyq); draw((8.479717231069488,0.23175243716578198)--(6.774611437566402,-1.2775286899079716), linewidth(0.4) + yqqqyq); draw((5.583497811991373,-0.12514644203569986)--(6.774611437566402,-1.2775286899079716), linewidth(0.4)); draw((6.774611437566402,-1.2775286899079716)--(7.970567257041406,-0.13021310164527633), linewidth(0.4)); draw((5.203016083634444,0.37031940111203876)--(6.428990563824133,-1.2261527399495333), linewidth(0.4) + qqwuqq); draw((6.428990563824133,-1.2261527399495333)--(8.479717231069488,0.23175243716578198), linewidth(0.4) + qqwuqq); draw(circle((6.777125950435706,-0.0836684697470635), 1.1943485902663675), linewidth(0.4)); /* dots and labels */ dot((3.152289416389089,-1.0875857760032765),dotstyle); label("$A$", (3.0755110741486646,-0.9439558583168237), NE * labelscalefactor); dot((7.253742750879799,1.828224578227354),dotstyle); label("$B$", (7.2917523009947836,1.9155315725176836), NE * labelscalefactor); dot((9.705691711259178,-1.3647197038957901),dotstyle); label("$C$", (9.790583659471812,-1.3131989800161745), NE * labelscalefactor); dot((6.295480124253005,-4.383281958043297),dotstyle); label("$D$", (6.450221465493929,-4.413123792422352), NE * labelscalefactor); dot((8.014706207593658,0.8372928919318768),linewidth(4.pt) + dotstyle); label("$E$", (8.07317379110272,0.919433848863621), NE * labelscalefactor); dot((6.235442802823634,1.1042935006052375),linewidth(4.pt) + dotstyle); label("$F$", (6.038043097085347,1.1598712304352914), NE * labelscalefactor); dot((6.428990563824133,-1.2261527399495333),linewidth(4.pt) + dotstyle); label("$P$", (6.3128286760244015,-1.4849399668530818), NE * labelscalefactor); dot((6.774611437566402,-1.2775286899079716),linewidth(4.pt) + dotstyle); label("$Q$", (6.810877537851438,-1.442004720143855), NE * labelscalefactor); dot((5.583497811991373,-0.12514644203569986),linewidth(4.pt) + dotstyle); label("$R$", (5.643038827360456,0.026380717311702804), NE * labelscalefactor); dot((7.970567257041406,-0.13021310164527633),linewidth(4.pt) + dotstyle); label("$T$", (8.081760840444565,-0.44590699648979243), NE * labelscalefactor); dot((8.479717231069488,0.23175243716578198),linewidth(4.pt) + dotstyle); label("$M$", (8.588396751613448,0.2067087534904555), NE * labelscalefactor); dot((5.203016083634444,0.37031940111203876),linewidth(4.pt) + dotstyle); label("$N$", (4.981836028038356,0.404210888352899), NE * labelscalefactor); dot((38.03612046364697,23.712071191313328),linewidth(4.pt) + dotstyle); label("$G$", (-0.31637341588029005,2.259013546191498), NE * labelscalefactor); dot((35.69924268819972,-35.21369507206871),linewidth(4.pt) + dotstyle); label("$H$", (-0.31637341588029005,2.259013546191498), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] I think you have a made mistake here congruence does not always hold in directed angles
09.03.2024 02:26
gliding away
09.06.2024 21:56
Let $Q$ be the Miquel point of $AFEC$ and $D'$ be the reflection of $D$ across $AC$. Let $M$ and $N$ be such that $AMED$ and $CNFD$ are parallelograms. Let $EM$ and $FN$ intersect at $P$. Claim: $D'ABC$ concyclic $$\angle AD'C=\angle ADC=\angle ABC$$Claim: $P$ lies on $(BEF)$ $$\angle FPE=\angle ADC=\angle FBE$$Claim: $CAQD'$ is similar to $EFQB$ The spiral symmetry at $Q$ sends $EF$ to $AC$, since $BF=BE$ and $D'A=D'C$ we are done. Claim: $P$, $Q$, and $D'$ are collinear $$\angle QPE=\angle QBC=\angle QD'C=180^{\circ}-\angle EPD'$$Claim: Triangles $BQD'$, $BFN$, and $BEM$ are similar Notice $\angle BQD'=\angle BFN=\angle BEM$ and $$\frac{BQ}{QD'}=\frac{EF}{AC}=\frac{BF}{DC}=\frac{BF}{FN}=\frac{BE}{EM}$$ Thus $BD'MN$ is concyclic and taking a homothey centered at $D$ with ratio $1/2$ finishes the problem.
Attachments:
