A convex quadrilateral $ABCD$ is given. A line $l \parallel AC$ meets the lines $AD$, $BC$, $AB$, $CD$ at points $X$, $Y$, $Z$, $T$ respectively. The circumcircles of triangles $XYB$ and $ZTB$ meet for the second time at point $R$. Prove that $R$ lies on $BD$.
Use Desargues Involution Theorem to obtain that if $l \cap BD = S$, then $(X, Y)$, $(Z, T)$, $(S, \infty_{l})$ are pairs of an involution which implies that $S$ is the center of this involution:
$$SX \cdot SY = SZ \cdot ST$$However this means that $S$ lies on the radical axis of $(XYB)$ and $(ZTB)$, or the radical axis is $BD$, hence we are done.
Let $T=BD\cap XZYW,S=AC\cap BD.$ By $ZT/YT=AS/SC=XT/WT$ we get $TX\cdot TY=TZ\cdot TW,$ so $B,T$ lies on the root axis of $XYB$ and $ZTB,$ so $BD$ is the root axis, done.$\Box$
BY DIT, $(X,Y);(Z,T);(BD \cap \ell, \infty_{\ell})$ are pairs of involution, as this can not be reflection over midpoints therefore it must an inversion so there exists point $P$ such that $PX \cdot PY = PZ \cdot PT = \overline{P BD\cap\ell} \cdot \overline{P \infty_{\ell}}$ implying $P$ lies on $BD$ and radical axes of both circles finishing our proof.
Let second intersection of $AX\cap(XBY) =P$ and $CT\cap (BZT) =Q$ then observe that $(APCB) $ and $(AQCB) $ is cyclic this implies $(XQPT) $ is cyclic hence $D$ lie on the radical of $(BZT) $ and $(BXY) $ as desired.
Let $BD$ meet $l$ and $AC$ at $P$ and $Q$. Then $$\frac{PX}{PT}=\frac{QA}{QC}=\frac{PZ}{PY}$$Thus $PX\cdot PY=PZ\cdot PT$ so $P$ lies on the radical axis of $(XYB)$ and $(ZTB)$. As $B$ also lies on their radical axis, the result follows.
Let $l\cap BD = \{O\}$.
Case 1. $O\neq B$.
By DIT, there is an involution swapping $(X,Y)$, $(Z,T)$ and $(O,\infty_{AC})$. But we know that a involution on a line is an inversion and since $O$ gets swapped to the point of infinity, the inversion must be centered at $O$. So we get $OX\cdot OY=OZ\cdot OT$ hence it lies on the radical axis of $(ZTB)$ and $(XYB)$ so $BD$ is the radical axis. $\square$
[asy][asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(15cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -3.22, xmax = 22.86, ymin = -11.56, ymax = 5.94; /* image dimensions */
pen qqzzcc = rgb(0.,0.6,0.8); pen qqzzqq = rgb(0.,0.6,0.);
draw((8.,-6.)--(18.,-6.)--(16.,0.)--(11.,2.)--cycle, linewidth(0.8) + qqzzcc);
/* draw figures */
draw((8.,-6.)--(18.,-6.), linewidth(0.8) + qqzzcc);
draw((18.,-6.)--(16.,0.), linewidth(0.8) + qqzzcc);
draw((16.,0.)--(11.,2.), linewidth(0.8) + qqzzcc);
draw((11.,2.)--(8.,-6.), linewidth(0.8) + qqzzcc);
draw((8.,-6.)--(16.,0.), linewidth(0.8));
draw((2.546666666666666,-6.)--(8.,-6.), linewidth(0.8));
draw((16.,0.)--(14.909333333333333,3.272), linewidth(0.8));
draw(circle((15.01536231884058,-1.8437681159420267), 5.116866771947141), linewidth(0.8) + qqzzqq);
draw(circle((10.273333333333335,-5.99304347826087), 7.726669798236012), linewidth(0.8) + qqzzqq);
draw((11.,2.)--(18.,-6.), linewidth(0.8));
draw((2.546666666666666,-6.)--(14.909333333333333,3.272), linewidth(0.8));
/* dots and labels */
dot((8.,-6.),dotstyle);
label("$A$", (7.7,-6.58), NE * labelscalefactor);
dot((18.,-6.),dotstyle);
label("$B$", (18.28,-6.48), NE * labelscalefactor);
dot((16.,0.),dotstyle);
label("$C$", (16.3,0.08), NE * labelscalefactor);
dot((11.,2.),dotstyle);
label("$D$", (10.86,2.36), NE * labelscalefactor);
dot((2.546666666666666,-6.),linewidth(4.pt) + dotstyle);
label("$Z$", (1.94,-6.1), NE * labelscalefactor);
dot((10.13391304347826,-0.30956521739130455),linewidth(4.pt) + dotstyle);
label("$X$", (9.56,-0.18), NE * labelscalefactor);
dot((12.443478260869565,1.422608695652174),linewidth(4.pt) + dotstyle);
label("$T$", (12.34,1.8), NE * labelscalefactor);
dot((14.909333333333333,3.272),linewidth(4.pt) + dotstyle);
label("$Y$", (14.92,3.7), NE * labelscalefactor);
dot((11.876981132075471,0.9977358490566037),linewidth(4.pt) + dotstyle);
label("$O$", (11.72,0.36), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy][/asy]
Case 2. $O=B$ ($l$ is the parallel through $B$ to $AC$)
We get $Y=Z=B$ and the circle $(XYB)$ becomes the circle passing through $B$ and $X$ and tangent to $BC$ and $(ZTB)$ is defined similarly. Let $(BBT)$ intersect $DC$ at $H$ and $(BBX)$ intersect $AD$ at $G$. We have $\angle ABH =\angle BTH=\angle ACH$ so $H$ lies on $(ABC)$ and similiary $G$ lies on $(ABC)$ so we have $DH\cdot DC=DG\cdot DA$ and since $AC$ is parallel to $XT$ we have $DH\cdot DT=DG\cdot DX$ so $GHTX$ is cyclic so $D$ lies on the radical axis of the circles. $\square$
[asy][asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(15cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -13.187030149311312, xmax = 42.369817808628284, ymin = -25.00999481626015, ymax = 12.269331842633335; /* image dimensions */
pen qqzzff = rgb(0.,0.6,1.); pen qqccqq = rgb(0.,0.8,0.); pen ffwwqq = rgb(1.,0.4,0.);
draw((8.,-7.)--(18.,-7.)--(16.,0.)--(9.819640017320117,2.2571698256733708)--cycle, linewidth(0.8) + qqzzff);
/* draw figures */
draw((8.,-7.)--(18.,-7.), linewidth(0.8) + qqzzff);
draw((18.,-7.)--(16.,0.), linewidth(0.8) + qqzzff);
draw((16.,0.)--(9.819640017320117,2.2571698256733708), linewidth(0.8) + qqzzff);
draw((9.819640017320117,2.2571698256733708)--(8.,-7.), linewidth(0.8) + qqzzff);
draw((8.,-7.)--(16.,0.), linewidth(0.8));
draw((8.,-7.)--(5.922781251999055,-17.567566404500827), linewidth(0.8));
draw((5.922781251999055,-17.567566404500827)--(23.05521944077962,-2.5766829893178325), linewidth(0.8));
draw((23.05521944077962,-2.5766829893178325)--(16.,0.), linewidth(0.8));
draw(circle((18.,-1.8996446713562773), 5.100355328643722), linewidth(0.8) + qqccqq);
draw(circle((9.470464259224334,-9.437010211650191), 8.87085107105608), linewidth(0.8) + qqccqq);
draw((9.264199574312139,-0.5685574940328231)--(13.698304072318887,0.8406174738035777), linewidth(0.8));
draw(circle((13.,-4.642857142857144), 5.527759261127386), linewidth(0.8) + ffwwqq);
draw((13.698304072318887,0.8406174738035777)--(8.,-7.), linewidth(0.8));
draw((13.698304072318887,0.8406174738035777)--(18.,-7.), linewidth(0.8));
/* dots and labels */
dot((8.,-7.),dotstyle);
label("$A$", (7.258047171952292,-6.962053738202001), NE * labelscalefactor);
dot((18.,-7.),dotstyle);
label("$B$", (18.370209188912267,-7.762053738202001), NE * labelscalefactor);
dot((16.,0.),dotstyle);
label("$C$", (16.16777678552027,0.42515720129346235), NE * labelscalefactor);
dot((9.819640017320117,2.2571698256733708),dotstyle);
label("$D$", (8.990059796332202,2.683219273203582), NE * labelscalefactor);
dot((23.05521944077962,-2.5766829893178325),linewidth(4.pt) + dotstyle);
label("$T$", (23.240197614521783,-2.216349373393847), NE * labelscalefactor);
dot((5.922781251999055,-17.567566404500827),linewidth(4.pt) + dotstyle);
label("$X$", (5.413009823807276,-18.413289926457282), NE * labelscalefactor);
dot((9.264199574312139,-0.5685574940328231),linewidth(4.pt) + dotstyle);
label("$G$", (8.636195514542927,-0.2139169700018545), NE * labelscalefactor);
dot((13.698304072318887,0.8406174738035777),linewidth(4.pt) + dotstyle);
label("$H$", (13.467109768857128,1.1920462068478426), NE * labelscalefactor);
dot((12.938395907762672,-1.2721189811485274),linewidth(4.pt) + dotstyle);
label("$I$", (13.100220763302747,-0.9382010308032136), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy][/asy]
Let $R$ be the intersection of $BXY$ and $BZT$. Let $K$ be such that $KX \parallel AB$ and $KT \parallel BC$. Note that since $XT \parallel AC$ then $B,K,D$ are collinear.
Claim $: XRTK$ is cyclic.
Proof $:$ Note that $\angle XRT = \angle XRB + \angle BRT = \angle XYB + \angle BZT = 180 - \angle B = 180 - \angle XKT$.
Now we have $\angle RKX = \angle RTX = \angle RTZ = \angle RBZ$ so $R$ lies on $BD$ as wanted.