Determine all real-valued functions $f$ on the set of real numbers satisfying \[2f(x)=f(x+y)+f(x+2y)\] for all real numbers $x$ and all non-negative real numbers $y$.
2011 Romania Team Selection Test
Day 1
Prove that the set $S=\{\lfloor n\pi\rfloor \mid n=0,1,2,3,\ldots\}$ contains arithmetic progressions of any finite length, but no infinite arithmetic progressions. Vasile Pop
Let $ABC$ be a triangle such that $AB<AC$. The perpendicular bisector of the side $BC$ meets the side $AC$ at the point $D$, and the (interior) bisectrix of the angle $ADB$ meets the circumcircle $ABC$ at the point $E$. Prove that the (interior) bisectrix of the angle $AEB$ and the line through the incentres of the triangles $ADE$ and $BDE$ are perpendicular.
Given an integer $n\ge 2$, compute $\sum_{\sigma} \textrm{sgn}(\sigma) n^{\ell(\sigma)}$, where all $n$-element permutations are considered, and where $\ell(\sigma)$ is the number of disjoint cycles in the standard decomposition of $\sigma$.
Day 2
Suppose a square of sidelengh $l$ is inside an unit square and does not contain its centre. Show that $l\le 1/2.$ Marius Cavachi
In triangle $ABC$, the incircle touches sides $BC,CA$ and $AB$ in $D,E$ and $F$ respectively. Let $X$ be the feet of the altitude of the vertex $D$ on side $EF$ of triangle $DEF$. Prove that $AX,BY$ and $CZ$ are concurrent on the Euler line of the triangle $DEF$.
Given a positive integer number $n$, determine the maximum number of edges a simple graph on $n$ vertices may have such that it contain no cycles of even length.
Show that: a) There are infinitely many positive integers $n$ such that there exists a square equal to the sum of the squares of $n$ consecutive positive integers (for instance, $2$ is one such number as $5^2=3^2+4^2$). b) If $n$ is a positive integer which is not a perfect square, and if $x$ is an integer number such that $x^2+(x+1)^2+...+(x+n-1)^2$ is a perfect square, then there are infinitely many positive integers $y$ such that $y^2+(y+1)^2+...+(y+n-1)^2$ is a perfect square.
Day 3
Let $ABCD$ be a cyclic quadrilateral which is not a trapezoid and whose diagonals meet at $E$. The midpoints of $AB$ and $CD$ are $F$ and $G$ respectively, and $\ell$ is the line through $G$ parallel to $AB$. The feet of the perpendiculars from E onto the lines $\ell$ and $CD$ are $H$ and $K$, respectively. Prove that the lines $EF$ and $HK$ are perpendicular.
Given real numbers $x,y,z$ such that $x+y+z=0$, show that \[\dfrac{x(x+2)}{2x^2+1}+\dfrac{y(y+2)}{2y^2+1}+\dfrac{z(z+2)}{2z^2+1}\ge 0\] When does equality hold?
Let $S$ be a finite set of positive integers which has the following property:if $x$ is a member of $S$,then so are all positive divisors of $x$. A non-empty subset $T$ of $S$ is good if whenever $x,y\in T$ and $x<y$, the ratio $y/x$ is a power of a prime number. A non-empty subset $T$ of $S$ is bad if whenever $x,y\in T$ and $x<y$, the ratio $y/x$ is not a power of a prime number. A set of an element is considered both good and bad. Let $k$ be the largest possible size of a good subset of $S$. Prove that $k$ is also the smallest number of pairwise-disjoint bad subsets whose union is $S$.
Let $ABCDEF$ be a convex hexagon of area $1$, whose opposite sides are parallel. The lines $AB$, $CD$ and $EF$ meet in pairs to determine the vertices of a triangle. Similarly, the lines $BC$, $DE$ and $FA$ meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least $3/2$.
Day 4
Let $ABCD$ be a cyclic quadrilateral. The lines $BC$ and $AD$ meet at a point $P$. Let $Q$ be the point on the line $BP$, different from $B$, such that $PQ=BP$. Consider the parallelograms $CAQR$ and $DBCS$. Prove that the points $C,Q,R,S$ lie on a circle.
Let $ABCD$ be a convex quadrangle such that $AB=AC=BD$ (vertices are labelled in circular order). The lines $AC$ and $BD$ meet at point $O$, the circles $ABC$ and $ADO$ meet again at point $P$, and the lines $AP$ and $BC$ meet at the point $Q$. Show that the angles $COQ$ and $DOQ$ are equal.
Given a triangle $ABC$, let $D$ be the midpoint of the side $AC$ and let $M$ be the point that divides the segment $BD$ in the ratio $1/2$; that is, $MB/MD=1/2$. The rays $AM$ and $CM$ meet the sides $BC$ and $AB$ at points $E$ and $F$, respectively. Assume the two rays perpendicular: $AM\perp CM$. Show that the quadrangle $AFED$ is cyclic if and only if the median from $A$ in triangle $ABC$ meets the line $EF$ at a point situated on the circle $ABC$.
Day 5
Show that there are infinitely many positive integer numbers $n$ such that $n^2+1$ has two positive divisors whose difference is $n$.
Let $n$ be an integer number greater than $2$, let $x_{1},x_{2},\ldots ,x_{n}$ be $n$ positive real numbers such that \[\sum_{i=1}^{n}\frac{1}{x_{i}+1}=1\] and let $k$ be a real number greater than $1$. Show that: \[\sum_{i=1}^{n}\frac{1}{x_{i}^{k}+1}\ge\frac{n}{(n-1)^{k}+1}\] and determine the cases of equality.
Given a set $L$ of lines in general position in the plane (no two lines in $L$ are parallel, and no three lines are concurrent) and another line $\ell$, show that the total number of edges of all faces in the corresponding arrangement, intersected by $\ell$, is at most $6|L|$. Chazelle et al., Edelsbrunner et al.
Day 6
Given a positive integer number $k$, define the function $f$ on the set of all positive integer numbers to itself by \[f(n)=\begin{cases}1, &\text{if }n\le k+1\\ f(f(n-1))+f(n-f(n-1)), &\text{if }n>k+1\end{cases}\] Show that the preimage of every positive integer number under $f$ is a finite non-empty set of consecutive positive integers.
Given a prime number $p$ congruent to $1$ modulo $5$ such that $2p+1$ is also prime, show that there exists a matrix of $0$s and $1$s containing exactly $4p$ (respectively, $4p+2$) $1$s no sub-matrix of which contains exactly $2p$ (respectively, $2p+1$) $1$s.
The incircle of a triangle $ABC$ touches the sides $BC,CA,AB$ at points $D,E,F$, respectively. Let $X$ be a point on the incircle, different from the points $D,E,F$. The lines $XD$ and $EF,XE$ and $FD,XF$ and $DE$ meet at points $J,K,L$, respectively. Let further $M,N,P$ be points on the sides $BC,CA,AB$, respectively, such that the lines $AM,BN,CP$ are concurrent. Prove that the lines $JM,KN$ and $LP$ are concurrent. Dinu Serbanescu