Problem

Source: American Mathematical Monthly - Romanian TST 2011

Tags: number theory proposed, number theory



Show that: a) There are infinitely many positive integers $n$ such that there exists a square equal to the sum of the squares of $n$ consecutive positive integers (for instance, $2$ is one such number as $5^2=3^2+4^2$). b) If $n$ is a positive integer which is not a perfect square, and if $x$ is an integer number such that $x^2+(x+1)^2+...+(x+n-1)^2$ is a perfect square, then there are infinitely many positive integers $y$ such that $y^2+(y+1)^2+...+(y+n-1)^2$ is a perfect square.