Problem

Source: American Mathematical Monthly

Tags: linear algebra, matrix, number theory proposed, number theory



Given a prime number $p$ congruent to $1$ modulo $5$ such that $2p+1$ is also prime, show that there exists a matrix of $0$s and $1$s containing exactly $4p$ (respectively, $4p+2$) $1$s no sub-matrix of which contains exactly $2p$ (respectively, $2p+1$) $1$s.