2015 China Team Selection Test

TST 1

- Day 1

1

The circle $\Gamma$ through $A$ of triangle $ABC$ meets sides $AB,AC$ at $E$,$F$ respectively, and circumcircle of $ABC$ at $P$. Prove: Reflection of $P$ across $EF$ is on $BC$ if and only if $\Gamma$ passes through $O$ (the circumcentre of $ABC$).

2

Let $a_1,a_2,a_3, \cdots $ be distinct positive integers, and $0<c<\frac{3}{2}$ . Prove that : There exist infinitely many positive integers $k$, such that $[a_k,a_{k+1}]>ck $.

3

Fix positive integers $k,n$. A candy vending machine has many different colours of candy, where there are $2n$ candies of each colour. A couple of kids each buys from the vending machine $2$ candies of different colours. Given that for any $k+1$ kids there are two kids who have at least one colour of candy in common, find the maximum number of kids.

- Day 2

4

Prove that : For each integer $n \ge 3$, there exists the positive integers $a_1<a_2< \cdots <a_n$ , such that for $ i=1,2,\cdots,n-2 $ , With $a_{i},a_{i+1},a_{i+2}$ may be formed as a triangle side length , and the area of the triangle is a positive integer.

5

FIx positive integer $n$. Prove: For any positive integers $a,b,c$ not exceeding $3n^2+4n$, there exist integers $x,y,z$ with absolute value not exceeding $2n$ and not all $0$, such that $ax+by+cz=0$

6

There are some players in a Ping Pong tournament, where every $2$ players play with each other at most once. Given: (1) Each player wins at least $a$ players, and loses to at least $b$ players. ($a,b\geq 1$) (2) For any two players $A,B$, there exist some players $P_1,...,P_k$ ($k\geq 2$) (where $P_1=A$,$P_k=B$), such that $P_i$ wins $P_{i+1}$ ($i=1,2...,k-1$). Prove that there exist $a+b+1$ distinct players $Q_1,...Q_{a+b+1}$, such that $Q_i$ wins $Q_{i+1}$ ($i=1,...,a+b$)

TST 2

Day 1

1

For a positive integer $n$, and a non empty subset $A$ of $\{1,2,...,2n\}$, call $A$ good if the set $\{u\pm v|u,v\in A\}$ does not contain the set $\{1,2,...,n\}$. Find the smallest real number $c$, such that for any positive integer $n$, and any good subset $A$ of $\{1,2,...,2n\}$, $|A|\leq cn$.

2

Let $a_1,a_2,a_3, \cdots ,a_n$ be positive real numbers. For the integers $n\ge 2$, prove that\[ \left (\frac{\sum_{j=1}^{n} \left (\prod_{k=1}^{j}a_k \right )^{\frac{1}{j}}}{\sum_{j=1}^{n}a_j} \right )^{\frac{1}{n}}+\frac{\left (\prod_{i=1}^{n}a_i \right )^{\frac{1}{n}}}{\sum_{j=1}^{n} \left (\prod_{k=1}^{j}a_k \right )^{\frac{1}{j}}}\le \frac{n+1}{n}\]

3

Let $ \triangle ABC $ be an acute triangle with circumcenter $ O $ and centroid $ G .$ Let $ D $ be the midpoint of $ BC $ and $ E\in \odot (BC) $ be a point inside $ \triangle ABC $ such that $ AE \perp BC . $ Let $ F=EG \cap OD $ and $ K, L $ be the point lie on $ BC $ such that $ FK \parallel OB, FL \parallel OC . $ Let $ M \in AB $ be a point such that $ MK \perp BC $ and $ N \in AC $ be a point such that $ NL \perp BC . $ Let $ \omega $ be a circle tangent to $ OB, OC $ at $ B, C, $ respectively $ . $ Prove that $ \odot (AMN) $ is tangent to $ \omega $

Day 2

4

Let $n$ be a positive integer, let $f_1(x),\ldots,f_n(x)$ be $n$ bounded real functions, and let $a_1,\ldots,a_n$ be $n$ distinct reals. Show that there exists a real number $x$ such that $\sum^n_{i=1}f_i(x)-\sum^n_{i=1}f_i(x-a_i)<1$.

5

Set $S$ to be a subset of size $68$ of $\{1,2,...,2015\}$. Prove that there exist $3$ pairwise disjoint, non-empty subsets $A,B,C$ such that $|A|=|B|=|C|$ and $\sum_{a\in A}a=\sum_{b\in B}b=\sum_{c\in C}c$

6

Prove that there exist infinitely many integers $n$ such that $n^2+1$ is squarefree.

TST 3

Day 1

1

$\triangle{ABC}$ is isosceles with $AB = AC >BC$. Let $D$ be a point in its interior such that $DA = DB+DC$. Suppose that the perpendicular bisector of $AB$ meets the external angle bisector of $\angle{ADB}$ at $P$, and let $Q$ be the intersection of the perpendicular bisector of $AC$ and the external angle bisector of $\angle{ADC}$. Prove that $B,C,P,Q$ are concyclic.

2

Let $X$ be a non-empty and finite set, $A_1,...,A_k$ $k$ subsets of $X$, satisying: (1) $|A_i|\leq 3,i=1,2,...,k$ (2) Any element of $X$ is an element of at least $4$ sets among $A_1,....,A_k$. Show that one can select $[\frac{3k}{7}] $ sets from $A_1,...,A_k$ such that their union is $X$.

3

Let $a,b$ be two integers such that their gcd has at least two prime factors. Let $S = \{ x \mid x \in \mathbb{N}, x \equiv a \pmod b \} $ and call $ y \in S$ irreducible if it cannot be expressed as product of two or more elements of $S$ (not necessarily distinct). Show there exists $t$ such that any element of $S$ can be expressed as product of at most $t$ irreducible elements.

Day 2

1

Let $x_1,x_2,\cdots,x_n$ $(n\geq2)$ be a non-decreasing monotonous sequence of positive numbers such that $x_1,\frac{x_2}{2},\cdots,\frac{x_n}{n}$ is a non-increasing monotonous sequence .Prove that \[ \frac{\sum_{i=1}^{n} x_i }{n\left (\prod_{i=1}^{n}x_i \right )^{\frac{1}{n}}}\le \frac{n+1}{2\sqrt[n]{n!}}\]

2

Let $G$ be the complete graph on $2015$ vertices. Each edge of $G$ is dyed red, blue or white. For a subset $V$ of vertices of $G$, and a pair of vertices $(u,v)$, define \[ L(u,v) = \{ u,v \} \cup \{ w | w \in V \ni \triangle{uvw} \text{ has exactly 2 red sides} \}\]Prove that, for any choice of $V$, there exist at least $120$ distinct values of $L(u,v)$.

3

For all natural numbers $n$, define $f(n) = \tau (n!) - \tau ((n-1)!)$, where $\tau(a)$ denotes the number of positive divisors of $a$. Prove that there exist infinitely many composite $n$, such that for all naturals $m < n$, we have $f(m) < f(n)$.