Problem

Source: China Team Selection Test 3 Day 2 P3

Tags: number theory, function



For all natural numbers $n$, define $f(n) = \tau (n!) - \tau ((n-1)!)$, where $\tau(a)$ denotes the number of positive divisors of $a$. Prove that there exist infinitely many composite $n$, such that for all naturals $m < n$, we have $f(m) < f(n)$.