2017 Switzerland - Final Round

Day 1

1

Let $A$ and $B$ be points on the circle $k$ with center $O$, so that $AB> AO$. Let $C$ be the intersection of the bisectors of $\angle OAB$ and $k$, different from $A$. Let $D$ be the intersection of the straight line $AB$ with the circumcircle of the triangle $OBC$, different from $B$. Show that $AD = AO$ .

2

Find all functions f : $R \to R $such that for all $x, y \in R$: $$f(x + yf(x)) = f(xf(y)) - x + f(y + f(x)).$$

3

The main building of ETH Zurich is a rectangle divided into unit squares. Every side of a square is a wall, with certain walls having doors. The outer wall of the main building has no doors. A number of participants of the SMO have gathered in the main building lost. You can only move from one square to another through doors. We have indicates that there is a walkable path between every two squares of the main building. Cyril wants the participants to find each other again by having everyone on the same square leads. To do this, he can give them the following instructions via walkie-talkie: North, East, South or West. After each instruction, each participant simultaneously attempts a square in that direction to go. If there is no door in the corresponding wall, he remains standing. Show that Cyril can reach his goal after a finite number of directions, no matter which one square the participants at the beginning. original wordingDas Hauptgebäude der ETH Zürich ist ein in Einheitsquadrate unterteiltes Rechteck. Jede Seite eines Quadrates ist eine Wand, wobei gewisse Wände Türen haben. Die Aussenwand des Hauptgebäudes hat keine Türen. Eine Anzahl von Teilnehmern der SMO hat sich im Hauptgebäude verirrt. Sie können sich nur durch Türen von einem Quadrat zum anderen bewegen. Wir nehmen an, dass zwischen je zwei Quadraten des Hauptgebäudes ein begehbarer Weg existiert. Cyril möchte erreichen, dass sich die Teilnehmer wieder nden, indem er alle auf dasselbe Quadrat führt. Dazu kann er ihnen per Walkie-Talkie folgende Anweisungen geben: Nord, Ost, Süd oder West. Nach jeder Anweisung versucht jeder Teilnehmer gleichzeitig, ein Quadrat in diese Richtung zu gehen. Falls in der entsprechenden Wand keine Türe ist, bleibt er stehen. Zeige, dass Cyril sein Ziel nach endlich vielen Anweisungen erreichen kann, egal auf welchen Quadraten sich die Teilnehmer am Anfang benden.

4

Let $n$ be a natural number and $p, q$ be prime numbers such that the following statements hold: $$pq | n^p + 2$$$$n + 2 | n^p + q^p.$$Show that there is a natural number $m$ such that $q|4^mn + 2$ holds.

5

Let $ABC$ be a triangle with $AC> AB$. Let $P$ be the intersection of $BC$ and the tangent through $A$ around the triangle $ABC$. Let $Q$ be the point on the straight line $AC$, so that $AQ = AB$ and $A$ is between $C$ and $Q$. Let $X$ and $Y$ be the center of $BQ$ and $AP$. Let $R$ be the point on $AP$ so that $AR = BP$ and $R$ is between $A$ and $P$. Show that $BR = 2XY$.

Day 2

6

The SMO camp has at least four leaders. Any two leaders are either mutual friends or enemies. In every group of four leaders there is at least one who is with the three is friends with others. Is there always one leader who is friends with everyone else?

7

Let $n$ be a natural number such that there are exactly$ 2017$ distinct pairs of natural numbers $(a, b)$, which the equation $$\frac{1}{a}+\frac{1}{b}=\frac{1}{n}$$fulfilld. Show that $n$ is a perfect square . Remark: $(7, 4) \ne (4, 7)$

8

Let $ABC$ be an isosceles triangle with vertex $A$ and $AB> BC$. Let $k$ be the circle with center $A$ passsing through $B$ and $C$. Let $H$ be the second intersection of $k$ with the altitude of the triangle $ABC$ through $B$. Further let $G$ be the second intersection of $k$ with the median through $B$ in triangle $ABC$. Let $X$ be the intersection of the lines $AC$ and $GH$. Show that $C$ is the midpoint of $AX$.

9

Consider a convex $15$- gon with perimeter $21$. Show that there one can select three distinct pairs of vertices that form a triangle with area less than $1$. original wording of second sentenceZeige, dass man davon drei paarweise verschiedene Eckpunkte auswählen kann, die ein Dreieck mit Fläche kleiner als 1 bilden.

10

Let $x, y, z$ be nonnegative real numbers with $xy + yz + zx = 1$. Show that: $$\frac{4}{x + y + z} \le (x + y)(\sqrt3 z + 1).$$