Let $ABC$ be a triangle with $AC> AB$. Let $P$ be the intersection of $BC$ and the tangent through $A$ around the triangle $ABC$. Let $Q$ be the point on the straight line $AC$, so that $AQ = AB$ and $A$ is between $C$ and $Q$. Let $X$ and $Y$ be the center of $BQ$ and $AP$. Let $R$ be the point on $AP$ so that $AR = BP$ and $R$ is between $A$ and $P$. Show that $BR = 2XY$.
Problem
Source: Switzerland - Swiss ΜΟ 2017 p5
Tags: geometry, circumcircle, equal segments, tangent
15.07.2020 16:42
Let $D=BQ\cap AP$, $\angle BAC=\alpha$, $\angle ABC=\beta$, $\angle ACB=\gamma$, $\ell$ the bisector of $\angle BAC$, $J=\ell\cap BC$ Fact 1: $Y$ is the midpoint of $RD$ Proof: since $QX=XB$ and $AQ=AB$, we have $AX\perp BQ$. $\angle AQB=\angle ABQ=\frac{\alpha}{2}$ $\Rightarrow$ $BD\parallel \ell$. $\triangle PAJ$ is isosceles because $\angle PAJ=\angle PAB+\angle BAJ=\gamma+\frac{\alpha}{2}$ and $\angle AJP=\angle AJB=\pi-\angle BAJ-\angle ABJ=\pi-\beta-\frac{\alpha}{2}=\gamma+\frac{\alpha}{2}$. Then $AP=PJ$ It follows that $BDAJ$ is an isosceles trapezoid, with $AD=BJ$. Since $AP=PJ$, $AR=PB$, then $PR=BJ=AD$ which is equivalent to $RY=YD$ as $PY=AY$ $_{\blacksquare}$ Let $H$ be the midpoint of $QR$ and $G$ be the midpoint of $BR$. From fact 1 it follows that $H,Y,G$ are collinear and $HY\parallel BQ\parallel \ell$, so $HY\perp AX$ Fact 2: $AH\parallel BC$ Proof: $AQDJ$ is a parallelogram because $\angle DQA=\angle DBA=\angle DJA=\frac{\alpha}{2}$ (the last equality is due to the fact that $ADBJ$ is an isosceles trapezoid) Let $L=HY\cap BC$. $YL=\frac{1}{2}AJ$ as $PY=AY$. $HY=frac{1}{2}DQ=\frac{1}{2}AJ=YL$ Since $HY=YL$ and $PY=AY$, we have that $PHAL$ is a parallelogram. Therefore $AH\parallel BC$ $_{\blacksquare}$ Fact 3: $H$ and $Y$ are symmetric wrt $AX$ Proof: $AHLJ$ is a parallelogram since $AH\parallel BC$ and $HL\parallel AJ$. Since $PY=AY$, we have $PL=LJ$ Then $AH=LJ=AY$. Since $AH=AY$ and $HY\perp AX$, we get that $H$ and $Y$ are symmetrical wrt $AX$ $_{\blacksquare}$ As a result, $XY=HX=GB=\frac{1}{2}BR$ ($HX=GB$ because $H,X,G$ are the midpoints of $RQ,QB,BR$)
15.07.2020 21:05
Let $S$ be the intersection of segments $BE$, $AP$. Since $AC>AB\implies \angle ABC>\angle ACB$ and $AX\perp BE$ we have $\angle XAB=\frac{\angle ABC+\angle ACB}{2}>\angle ACB=\angle SAB$ which proves $S$ belongs to the segment $BX$. $$AE=AB\implies \angle ABS=\frac{\angle BAC}{2}\implies \angle ASB=180^\circ-\frac{\angle BAC}{2}-\angle ACB=\frac{\angle BAC}{2}+\angle ABC=\angle SBC$$Therefore $AR=PB=PS$ and $Y$ is the midpoint of segment $RS$. Let $T$ be the midpoint of segment $BR$. We will prove $XY=BT$. Denote $G$ as intersection of lines $YT,BC$. Segment $YT$ is a midline in triangle $BSR$ so $GY\parallel BS$ and $BG=SY$. Because $\angle TGB=180^\circ-\angle GBS= \angle YSX$ we need only $SX=TG$ to get $\triangle TGB\equiv\triangle XSY$. Let's focus on this equality. Menelaos in $\triangle PGY$ with line $B,T,R$ gives $$1=\frac{PB}{BG}\cdot\frac{TG}{TY}\cdot\frac{RY}{PR}\iff 1=\frac{PB}{PR}\cdot\frac{TG}{TY}\iff 2TG=\frac{PR\cdot BS}{PB}$$By sine theorem $$\frac{PC}{AP}=\frac{\sin\angle ABC}{\sin\angle ACB}=\frac{AC}{AB}.$$Menelaos in $\triangle BQC$ with line $P,S,A$ yields $$1=\frac{CP}{BP}\cdot\frac{BS}{QS}\cdot\frac{QA}{AC}\iff 1=\frac{CP}{BP}\cdot\frac{BS}{BS+2SX}\cdot\frac{AB}{AC}\iff 1=\frac{AP}{BP}\cdot\frac{BS}{BS+2SX}\iff$$$$\frac{2SX}{BS}=\frac{AP-PS}{PS}\iff 2SX=\frac{BS\cdot AS}{PS}$$. Since $PR=AS$ and $PS=PB$ we have finished. QED [asy][asy] import graph; size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.5) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -531.5846213152032, xmax = 210.00837172393426, ymin = -171.9425179802412, ymax = 400.3239015708722; /* image dimensions */ pen qqffff = rgb(0,1,1); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); draw(arc((-175.97388150836545,-50.13928120550586),17.219651541156445,520.3033740676287,539.2372790539325)--(-175.97388150836545,-50.13928120550586)--cycle, linewidth(1.6)); draw(arc((-309.51714047784264,78.95249219649529),17.219651541156445,390.43847700466654,409.37238199097044)--(-309.51714047784264,78.95249219649529)--cycle, linewidth(1.6)); /* draw figures */ draw(circle((2.0573391846348117,33.76104340166296), 196.81051803861516), linewidth(0.6) + dotted); draw((-291.2486803621402,384.9933462175579)--(-175.97388150836545,-50.13928120550586), linewidth(0.6) + qqffff); draw((-395.4800504066084,28.440722606816564)--(-175.97388150836545,-50.13928120550586), linewidth(0.6) + linetype("4 4") + dtsfsf); draw((-309.51714047784264,78.95249219649529)--(-233.6112809352528,167.42703250602602), linewidth(0.6) + linetype("4 4") + dtsfsf); draw((-175.97388150836545,-50.13928120550586)--(-97.64940247806072,203.4458856169786), linewidth(0.6) + blue); draw((-291.2486803621402,384.9933462175579)--(-97.64940247806072,203.4458856169786), linewidth(0.6) + blue); draw((-97.64940247806072,203.4458856169786)--(177.791969113298,-54.848887500374545), linewidth(0.6)); draw((-521.3848784776246,-45.54090122398801)--(-395.4800504066084,28.440722606816564), linewidth(0.6) + green); draw((-395.4800504066084,28.440722606816564)--(-97.64940247806072,203.4458856169786), linewidth(0.6) + linetype("0 3 4 3") + green); draw((-521.3848784776246,-45.54090122398801)--(-175.97388150836545,-50.13928120550586), linewidth(0.6) + linetype("0 3 4 3") + wrwrwr); draw((-175.97388150836545,-50.13928120550586)--(177.791969113298,-54.848887500374545), linewidth(0.6)); draw((-233.6112809352528,167.42703250602602)--(-97.64940247806072,203.4458856169786), linewidth(0.6)); draw((-309.51714047784264,78.95249219649529)--(-275.6699155713109,-48.812050019196604), linewidth(0.6) + qqffff); /* dots and labels */ dot((-97.64940247806072,203.4458856169786),dotstyle); label("$A$", (-99.37136763217649,211.4817230028518), NE * labelscalefactor); dot((-175.97388150836545,-50.13928120550586),dotstyle); label("$B$", (-196.46962533795872,-76.60669004036338), NE * labelscalefactor); dot((177.791969113298,-54.848887500374545),dotstyle); label("$C$", (183.03091764278915,-67.47663196388952), NE * labelscalefactor); dot((-291.2486803621402,384.9933462175579),dotstyle); label("$Q$", (-319.7112325872329,374.0863313367787), NE * labelscalefactor); dot((-521.3848784776246,-45.54090122398801),dotstyle); label("$P$", (-521.8268187752145,-68.58877134742677), NE * labelscalefactor); dot((-395.4800504066084,28.440722606816564),dotstyle); label("$R$", (-407.0291418341716,34.11931212893602), NE * labelscalefactor); dot((-309.51714047784264,78.95249219649529),dotstyle); label("$Y$", (-317.4869538201581,84.63028998299619), NE * labelscalefactor); dot((-233.6112809352528,167.42703250602602),dotstyle); label("$X$", (-264.31239411671146,168.4325941499596), NE * labelscalefactor); dot((-285.7269659574869,-10.849279299344648),dotstyle); label("$T$", (-310.6933138942964,-29.27952634158688), NE * labelscalefactor); dot((-223.55423054907686,129.464261786174),dotstyle); label("$S$", (-213.02106780380902,119.64358145001515), NE * labelscalefactor); dot((-275.6699155713109,-48.812050019196604),dotstyle); label("$G$", (-279.60372042961393,-76.31073650154246), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy]
26.10.2023 18:20
Take a point B' on extension of BY such that BY=YB'.Then ABPB' is parallelogram and triangles AQB' and ABR are congruent.Rest is easy.
28.10.2023 22:02
Ismayil_Orucov wrote: Take a point B' on extension of BY such that BY=YB'.Then ABPB' is parallelogram and triangles AQB' and ABR are congruent.Rest is easy. Thanks for Elegant Solution