2016 China Team Selection Test

$\hspace{1cm}$ - TST 1

$\hspace{1cm}$ - Day 1

1

$ABCDEF$ is a cyclic hexagon with $AB=BC=CD=DE$. $K$ is a point on segment $AE$ satisfying $\angle BKC=\angle KFE, \angle CKD = \angle KFA$. Prove that $KC=KF$.

2

Find the smallest positive number $\lambda $ , such that for any complex numbers ${z_1},{z_2},{z_3}\in\{z\in C\big| |z|<1\}$ ,if $z_1+z_2+z_3=0$, then $$\left|z_1z_2 +z_2z_3+z_3z_1\right|^2+\left|z_1z_2z_3\right|^2 <\lambda .$$

3

Let $n \geq 2$ be a natural. Define $$X = \{ (a_1,a_2,\cdots,a_n) | a_k \in \{0,1,2,\cdots,k\}, k = 1,2,\cdots,n \}$$. For any two elements $s = (s_1,s_2,\cdots,s_n) \in X, t = (t_1,t_2,\cdots,t_n) \in X$, define $$s \vee t = (\max \{s_1,t_1\},\max \{s_2,t_2\}, \cdots , \max \{s_n,t_n\} )$$$$s \wedge t = (\min \{s_1,t_1 \}, \min \{s_2,t_2,\}, \cdots, \min \{s_n,t_n\})$$Find the largest possible size of a proper subset $A$ of $X$ such that for any $s,t \in A$, one has $s \vee t \in A, s \wedge t \in A$.

$\hspace{1cm}$ - Day 2

4

Let $c,d \geq 2$ be naturals. Let $\{a_n\}$ be the sequence satisfying $a_1 = c, a_{n+1} = a_n^d + c$ for $n = 1,2,\cdots$. Prove that for any $n \geq 2$, there exists a prime number $p$ such that $p|a_n$ and $p \not | a_i$ for $i = 1,2,\cdots n-1$.

5

Refer to the diagram below. Let $ABCD$ be a cyclic quadrilateral with center $O$. Let the internal angle bisectors of $\angle A$ and $\angle C$ intersect at $I$ and let those of $\angle B$ and $\angle D$ intersect at $J$. Now extend $AB$ and $CD$ to intersect $IJ$ and $P$ and $R$ respectively and let $IJ$ intersect $BC$ and $DA$ at $Q$ and $S$ respectively. Let the midpoints of $PR$ and $QS$ be $M$ and $N$ respectively. Given that $O$ does not lie on the line $IJ$, show that $OM$ and $ON$ are perpendicular.

6

Let $m,n$ be naturals satisfying $n \geq m \geq 2$ and let $S$ be a set consisting of $n$ naturals. Prove that $S$ has at least $2^{n-m+1}$ distinct subsets, each whose sum is divisible by $m$. (The zero set counts as a subset).

$\hspace{1cm}$ - TST 2

$\hspace{1cm}$ - Day 1

1

$P$ is a point in the interior of acute triangle $ABC$. $D,E,F$ are the reflections of $P$ across $BC,CA,AB$ respectively. Rays $AP,BP,CP$ meet the circumcircle of $\triangle ABC$ at $L,M,N$ respectively. Prove that the circumcircles of $\triangle PDL,\triangle PEM,\triangle PFN$ meet at a point $T$ different from $P$.

2

Find the smallest positive number $\lambda$, such that for any $12$ points on the plane $P_1,P_2,\ldots,P_{12}$(can overlap), if the distance between any two of them does not exceed $1$, then $\sum_{1\le i<j\le 12} |P_iP_j|^2\le \lambda$.

3

Let $P$ be a finite set of primes, $A$ an infinite set of positive integers, where every element of $A$ has a prime factor not in $P$. Prove that there exist an infinite subset $B$ of $A$, such that the sum of elements in any finite subset of $B$ has a prime factor not in $P$.

$\hspace{1cm}$ - Day 2

4

Set positive integer $m=2^k\cdot t$, where $k$ is a non-negative integer, $t$ is an odd number, and let $f(m)=t^{1-k}$. Prove that for any positive integer $n$ and for any positive odd number $a\le n$, $\prod_{m=1}^n f(m)$ is a multiple of $a$.

5

Does there exist two infinite positive integer sets $S,T$, such that any positive integer $n$ can be uniquely expressed in the form $$n=s_1t_1+s_2t_2+\ldots+s_kt_k$$,where $k$ is a positive integer dependent on $n$, $s_1<\ldots<s_k$ are elements of $S$, $t_1,\ldots, t_k$ are elements of $T$?

6

The diagonals of a cyclic quadrilateral $ABCD$ intersect at $P$, and there exist a circle $\Gamma$ tangent to the extensions of $AB,BC,AD,DC$ at $X,Y,Z,T$ respectively. Circle $\Omega$ passes through points $A,B$, and is externally tangent to circle $\Gamma$ at $S$. Prove that $SP\perp ST$.

$\hspace{1cm}$ - TST 3

$\hspace{1cm}$ - Day 1

1

Let $n$ be an integer greater than $1$, $\alpha$ is a real, $0<\alpha < 2$, $a_1,\ldots ,a_n,c_1,\ldots ,c_n$ are all positive numbers. For $y>0$, let $$f(y)=\left(\sum_{a_i\le y} c_ia_i^2\right)^{\frac{1}{2}}+\left(\sum_{a_i>y} c_ia_i^{\alpha} \right)^{\frac{1}{\alpha}}.$$If positive number $x$ satisfies $x\ge f(y)$ (for some $y$), prove that $f(x)\le 8^{\frac{1}{\alpha}}\cdot x$.

2

In the coordinate plane the points with both coordinates being rational numbers are called rational points. For any positive integer $n$, is there a way to use $n$ colours to colour all rational points, every point is coloured one colour, such that any line segment with both endpoints being rational points contains the rational points of every colour?

3

In cyclic quadrilateral $ABCD$, $AB>BC$, $AD>DC$, $I,J$ are the incenters of $\triangle ABC$,$\triangle ADC$ respectively. The circle with diameter $AC$ meets segment $IB$ at $X$, and the extension of $JD$ at $Y$. Prove that if the four points $B,I,J,D$ are concyclic, then $X,Y$ are the reflections of each other across $AC$.

$\hspace{1cm}$ - Day 2

4

Let $a,b,b',c,m,q$ be positive integers, where $m>1,q>1,|b-b'|\ge a$. It is given that there exist a positive integer $M$ such that $$S_q(an+b)\equiv S_q(an+b')+c\pmod{m}$$ holds for all integers $n\ge M$. Prove that the above equation is true for all positive integers $n$. (Here $S_q(x)$ is the sum of digits of $x$ taken in base $q$).

5

Let $S$ be a finite set of points on a plane, where no three points are collinear, and the convex hull of $S$, $\Omega$, is a $2016-$gon $A_1A_2\ldots A_{2016}$. Every point on $S$ is labelled one of the four numbers $\pm 1,\pm 2$, such that for $i=1,2,\ldots , 1008,$ the numbers labelled on points $A_i$ and $A_{i+1008}$ are the negative of each other. Draw triangles whose vertices are in $S$, such that any two triangles do not have any common interior points, and the union of these triangles is $\Omega$. Prove that there must exist a triangle, where the numbers labelled on some two of its vertices are the negative of each other.

6

Find all functions $f: \mathbb R^+ \rightarrow \mathbb R^+$ satisfying the following condition: for any three distinct real numbers $a,b,c$, a triangle can be formed with side lengths $a,b,c$, if and only if a triangle can be formed with side lengths $f(a),f(b),f(c)$.