Problem

Source: China Team Selection Test 2016 Test 3 Day 2 Q5

Tags: combinatorics, graph theory, combinatorial geometry



Let $S$ be a finite set of points on a plane, where no three points are collinear, and the convex hull of $S$, $\Omega$, is a $2016-$gon $A_1A_2\ldots A_{2016}$. Every point on $S$ is labelled one of the four numbers $\pm 1,\pm 2$, such that for $i=1,2,\ldots , 1008,$ the numbers labelled on points $A_i$ and $A_{i+1008}$ are the negative of each other. Draw triangles whose vertices are in $S$, such that any two triangles do not have any common interior points, and the union of these triangles is $\Omega$. Prove that there must exist a triangle, where the numbers labelled on some two of its vertices are the negative of each other.