Let $c,d \geq 2$ be naturals. Let $\{a_n\}$ be the sequence satisfying $a_1 = c, a_{n+1} = a_n^d + c$ for $n = 1,2,\cdots$. Prove that for any $n \geq 2$, there exists a prime number $p$ such that $p|a_n$ and $p \not | a_i$ for $i = 1,2,\cdots n-1$.
Problem
Source: China 2016 TST Day 2 Q4
Tags: number theory, Sequence, prime numbers
16.03.2016 07:15
This is very similar to ISL 2014 N7 . In fact, the same method works here and is much easier to see since the recursion contains only one $a_n$ term while it is more complicated for the N7.
16.03.2016 07:37
10.04.2016 01:36
17.04.2016 14:56
Let us introduce $b_n=a_n/c$ with recurrent $b_{n+1}=b_n^dc^{d-1}+1$, $b_1=1$. It is evident that $(b_n,c)=1$,so it is sufficient to prove that $(b_n,b_m)=1$ for $n\not =m$. It follows by induction from the next lemma: Lemma. $b_n \equiv b_{n-m} \mod b_m$ for positive integers $n>m$. Proof: Let us prove this assertion by induction by $n$. Base is evident, let us assume that $b_{n-1} \equiv b_{n-m-1} \mod b_m$ (here we define $b_0=0$ naturally). Then $b_n=b_{n-1}^dc^{d-1}+1 \equiv b_{n-m-1}^dc^{d-1}+1=b_{n-m} \mod b_m$, Q.E.D.
13.05.2017 12:14
But according the lemma bm|b2m , and it is a contradiction to gcd(bm,b2m)=1
25.10.2017 17:09
pavel kozlov wrote: Let us introduce $b_n=a_n/c$ with recurrent $b_{n+1}=b_n^dc^{d-1}+1$, $b_1=1$. It is evident that $(b_n,c)=1$,so it is sufficient to prove that $(b_n,b_m)=1$ for $n\not =m$. It follows by induction from the next lemma: Lemma. $b_n \equiv b_{n-m} \mod b_m$ for positive integers $n>m$. Proof: Let us prove this assertion by induction by $n$. Base is evident, let us assume that $b_{n-1} \equiv b_{n-m-1} \mod b_m$ (here we define $b_0=0$ naturally). Then $b_n=b_{n-1}^dc^{d-1}+1 \equiv b_{n-m-1}^dc^{d-1}+1=b_{n-m} \mod b_m$, Q.E.D. Wrong. $(b_n,b_m)=1$ isn't true. it can be proved that ,such as,$ b_2|b_4$ or take$ c=d=2$ you can see $ b_2|b_4$.
15.09.2021 18:21
fattypiggy123 wrote: Let $c,d \geq 2$ be naturals. Let $\{a_n\}$ be the sequence satisfying $a_1 = c, a_{n+1} = a_n^d + c$ for $n = 1,2,\cdots$. Prove that for any $n \geq 2$, there exists a prime number $p$ such that $p|a_n$ and $p \not | a_i$ for $i = 1,2,\cdots n-1$.
13.12.2021 03:33
04.05.2022 21:23
01.04.2023 16:18
运用反证法, 假设某个 ${n}\in\mathbb N_+$ 满足 $a_n$ 的所有素因子均为 $\prod\limits_{k=1}^{n-1}a_k$ 的因子. 取 $a_n$ 的一个素因子 ${p}$, 则 $\exists 1\leq j\leq n-1$, 满足 $p\mid a_j$. 取最小满足的 ${j}$, 我们来证明 $j\mid n$. 通过 $a_{j+1}\equiv a_j^d+c\equiv c=a_1\pmod p$, 不难运用数学归纳法证明对 $\forall u\in\mathbb N_+$, $a_{j+u}\equiv a_u\pmod p$. 因此数列 $\{a_n\}$ 在模 ${p}$ 意义下以 ${j}$ 为周期. 记 $a_n=qj+r$, 其中 $j\in\mathbb Z$ 且 $0< r\leq j$. 故 $a_n\equiv a_r\pmod p$, 由 ${j}$ 的最小性知 $r=j$, 即 $j\mid n$. 我们再证明 $v_p(a_n)=v_p(a_j)$. 记 $v_p(a_n)=r$, 则 $a_{j+1}=a_j^d+c\equiv c=a_1\pmod{p^{rd}}$. 不难运用数学归纳法证明对 $\forall u\in\mathbb N_+$, $a_{j+u}\equiv a_u\pmod {p^{rd}}$. 因此 $a_n\equiv a_j\pmod {p^{rd}}$. 但 $v_p(a_j)=r<rd$, 从而必有 $v_p(a_n)=v_p(a_j)$. 故对于 $a_n$ 的所有素因子 ${p}$, $v_p(a_n)\leqslant v_p\left(\prod\limits_{k=1}^{n-1}a_k\right)$, 从而 $a_n\mid\prod\limits_{k=1}^{n-1}a_k$, 因此 $a_n\leqslant\prod\limits_{k=1}^{n-1}a_k$. 但当 $n=2$ 时, $a_2=a_1^d+c>a_1$, 我们可运用数学归纳法, 通过 $n-1$ 时 $a_{n-1}>\prod\limits_{k=1}^{n-2}a_k$, 得到 $a_n>a_{n-1}^2>\prod\limits_{k=1}^{n-1}a_k$. 这证明了对于 $\forall n\in\mathbb N_+$ 均有 $a_n>\prod\limits_{k=1}^{n-1}a_k$, 矛盾! 故存在 $a_n$ 的素因子 ${p}$ 满足 $p\nmid\prod\limits_{k=1}^{n-1}a_k$.$\blacksquare$
01.03.2024 19:35
We uploaded our solution https://calimath.org/pdf/ChinaTST2016-1-4.pdf on youtube https://youtu.be/TapKwmarZXA.