2019 Oral Moscow Geometry Olympiad

grades 8-9

1

In the triangle $ABC, I$ is the center of the inscribed circle, point $M$ lies on the side of $BC$, with $\angle BIM = 90^o$. Prove that the distance from point $M$ to line $AB$ is equal to the diameter of the circle inscribed in triangle $ABC$

2

On the side $AC$ of the triangle $ABC$ in the external side is constructed the parallelogram $ACDE$ . Let $O$ be the intersection point of its diagonals, $N$ and $K$ be midpoints of BC and BA respectively. Prove that lines $DK, EN$ and $BO$ intersect at one point.

3

In the acute triangle $ABC, \angle ABC = 60^o , O$ is the center of the circumscribed circle and $H$ is the orthocenter. The angle bisector $BL$ intersects the circumscribed circle at the point $W, X$ is the intersection point of segments $WH$ and $AC$ . Prove that points $O, L, X$ and $H$ lie on the same circle.

4

The perpendicular bisector of the bisector $BL$ of the triangle $ABC$ intersects the bisectors of its external angles $A$ and $C$ at points $P$ and $Q$, respectively. Prove that the circle circumscribed around the triangle $PBQ$ is tangent to the circle circumscribed around the triangle $ABC$.

5

Given the segment $ PQ$ and a circle . A chord $AB$ moves around the circle, equal to $PQ$. Let $T$ be the intersection point of the perpendicular bisectors of the segments $AP$ and $BQ$. Prove that all points of $T$ thus obtained lie on one line.

6

In the acute triangle $ABC$, the point $I_c$ is the center of excircle on the side $AB$, $A_1$ and $B_1$ are the tangency points of the other two excircles with sides $BC$ and $CA$, respectively, $C'$ is the point on the circumcircle diametrically opposite to point $C$. Prove that the lines $I_cC'$ and $A_1B_1$ are perpendicular.

grades 10-11

1

Circle inscribed in square $ABCD$ , is tangent to sides $AB$ and $CD$ at points $M$ and $K$ respectively. Line $BK$ intersects this circle at the point $L, X$ is the midpoint of $KL$. Find the angle $\angle MXK $.

2

The angles of one quadrilateral are equal to the angles another quadrilateral. In addition, the corresponding angles between their diagonals are equal. Are these quadrilaterals necessarily similar?

3

Restore the acute triangle $ABC$ given the vertex $A$, the foot of the altitude drawn from the vertex $B$ and the center of the circle circumscribed around triangle $BHC$ (point $H$ is the orthocenter of triangle $ABC$).

4

Given a right triangle $ABC$ ($\angle C=90^o$). The $C$-excircle touches the hypotenuse $AB$ at point $C_1, A_1$ is the touchpoint of $B$-excircle with line $BC, B_1$ is the touchpoint of $A$-excircle with line $AC$. Find the angle $\angle A_1C_1B_1$.

5

On sides $AB$ and $BC$ of a non-isosceles triangle $ABC$ are selected points $C_1$ and $A_1$ such that the quadrilateral $AC_1A_1C$ is cyclic. Lines $CC_1$ and $AA_1$ intersect at point $P$. Line $BP$ intersects the circumscribed circle of triangle $ABC$ at the point $Q$. Prove that the lines $QC_1$ and $CM$, where $M$ is the midpoint of $A_1C_1$, intersect at the circumscribed circles of triangle $ABC$.

6

The sum of the cosines of the flat angles of the trihedral angle is $-1$. Find the sum of its dihedral angles.