2017 India IMO Training Camp

Practice Tests

Practice Test 1

1

Let $P_c(x)=x^4+ax^3+bx^2+cx+1$ and $Q_c(x)=x^4+cx^3+bx^2+ax+1$ with $a,b$ real numbers, $c \in \{1,2, \dots, 2017\}$ an integer and $a \ne c$. Define $A_c=\{\alpha | P_c(\alpha)=0\}$ and $B_c=\{\beta | P(\beta)=0\}$. (a) Find the number of unordered pairs of polynomials $P_c(x), Q_c(x)$ with exactly two common roots. (b) For any $1 \le c \le 2017$, find the sum of the elements of $A_c \Delta B_c$.

2

Find all positive integers $p,q,r,s>1$ such that $$p!+q!+r!=2^s.$$

3

Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\Omega$ with $AC \perp BD$. Let $P=AC \cap BD$ and $W,X,Y,Z$ be the projections of $P$ on the lines $AB, BC, CD, DA$ respectively. Let $E,F,G,H$ be the mid-points of sides $AB, BC, CD, DA$ respectively. (a) Prove that $E,F,G,H,W,X,Y,Z$ are concyclic. (b) If $R$ is the radius of $\Omega$ and $d$ is the distance between its centre and $P$, then find the radius of the circle in (a) in terms of $R$ and $d$.

Practice Test 2

1

In an acute triangle $ABC$, points $D$ and $E$ lie on side $BC$ with $BD<BE$. Let $O_1, O_2, O_3, O_4, O_5, O_6$ be the circumcenters of triangles $ABD, ADE, AEC, ABE, ADC, ABC$, respectively. Prove that $O_1, O_3, O_4, O_5$ are con-cyclic if and only if $A, O_2, O_6$ are collinear.

2

Let $a,b,c,d$ be pairwise distinct positive integers such that $$\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}$$is an integer. Prove that $a+b+c+d$ is not a prime number.

3

There are $n$ lamps $L_1, L_2, \dots, L_n$ arranged in a circle in that order. At any given time, each lamp is either on or off. Every second, each lamp undergoes a change according to the following rule: (a) For each lamp $L_i$, if $L_{i-1}, L_i, L_{i+1}$ have the same state in the previous second, then $L_i$ is off right now. (Indices taken mod $n$.) (b) Otherwise, $L_i$ is on right now. Initially, all the lamps are off, except for $L_1$ which is on. Prove that for infinitely many integers $n$ all the lamps will be off eventually, after a finite amount of time.

Team Selection Tests

TST 1

1

Let $a,b,c$ be distinct positive real numbers with $abc=1$. Prove that $$\sum_{\text{cyc}} \frac{a^6}{(a-b)(a-c)}>15.$$

2

Define a sequence of integers $a_0=m, a_1=n$ and $a_{k+1}=4a_k-5a_{k-1}$ for all $k \ge 1$. Suppose $p>5$ is a prime with $p \equiv 1 \pmod{4}$. Prove that it is possible to choose $m,n$ such that $p \nmid a_k$ for any $k \ge 0$.

3

Let $n \ge 1$ be a positive integer. An $n \times n$ matrix is called good if each entry is a non-negative integer, the sum of entries in each row and each column is equal. A permutation matrix is an $n \times n$ matrix consisting of $n$ ones and $n(n-1)$ zeroes such that each row and each column has exactly one non-zero entry. Prove that any good matrix is a sum of finitely many permutation matrices.

TST 2

1

Suppose $f,g \in \mathbb{R}[x]$ are non constant polynomials. Suppose neither of $f,g$ is the square of a real polynomial but $f(g(x))$ is. Prove that $g(f(x))$ is not the square of a real polynomial.

2

Let $n$ be a positive integer relatively prime to $6$. We paint the vertices of a regular $n$-gon with three colours so that there is an odd number of vertices of each colour. Show that there exists an isosceles triangle whose three vertices are of different colours.

3

Let $B = (-1, 0)$ and $C = (1, 0)$ be fixed points on the coordinate plane. A nonempty, bounded subset $S$ of the plane is said to be nice if $\text{(i)}$ there is a point $T$ in $S$ such that for every point $Q$ in $S$, the segment $TQ$ lies entirely in $S$; and $\text{(ii)}$ for any triangle $P_1P_2P_3$, there exists a unique point $A$ in $S$ and a permutation $\sigma$ of the indices $\{1, 2, 3\}$ for which triangles $ABC$ and $P_{\sigma(1)}P_{\sigma(2)}P_{\sigma(3)}$ are similar. Prove that there exist two distinct nice subsets $S$ and $S'$ of the set $\{(x, y) : x \geq 0, y \geq 0\}$ such that if $A \in S$ and $A' \in S'$ are the unique choices of points in $\text{(ii)}$, then the product $BA \cdot BA'$ is a constant independent of the triangle $P_1P_2P_3$.

TST 3

1

Find all positive integers $n$ for which all positive divisors of $n$ can be put into the cells of a rectangular table under the following constraints: each cell contains a distinct divisor; the sums of all rows are equal; and the sums of all columns are equal.

2

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

3

Prove that for any positive integers $a$ and $b$ we have $$a+(-1)^b \sum^a_{m=0} (-1)^{\lfloor{\frac{bm}{a}\rfloor}} \equiv b+(-1)^a \sum^b_{n=0} (-1)^{\lfloor{\frac{an}{b}\rfloor}} \pmod{4}.$$

TST 4

1

Let $ABC$ be an acute angled triangle with incenter $I$. Line perpendicular to $BI$ at $I$ meets $BA$ and $BC$ at points $P$ and $Q$ respectively. Let $D, E$ be the incenters of $\triangle BIA$ and $\triangle BIC$ respectively. Suppose $D,P,Q,E$ lie on a circle. Prove that $AB=BC$.

2

For each $n \ge 2$ define the polynomial $$f_n(x)=x^n-x^{n-1}-\dots-x-1.$$Prove that (a) For each $n \ge 2$, $f_n(x)=0$ has a unique positive real root $\alpha_n$; (b) $(\alpha_n)_n$ is a strictly increasing sequence; (c) $\lim_{n \rightarrow \infty} \alpha_n=2.$

3

Let $a$ be a positive integer which is not a perfect square, and consider the equation \[k = \frac{x^2-a}{x^2-y^2}.\]Let $A$ be the set of positive integers $k$ for which the equation admits a solution in $\mathbb Z^2$ with $x>\sqrt{a}$, and let $B$ be the set of positive integers for which the equation admits a solution in $\mathbb Z^2$ with $0\leq x<\sqrt{a}$. Show that $A=B$.