Let $P_c(x)=x^4+ax^3+bx^2+cx+1$ and $Q_c(x)=x^4+cx^3+bx^2+ax+1$ with $a,b$ real numbers, $c \in \{1,2, \dots, 2017\}$ an integer and $a \ne c$. Define $A_c=\{\alpha | P_c(\alpha)=0\}$ and $B_c=\{\beta | P(\beta)=0\}$. (a) Find the number of unordered pairs of polynomials $P_c(x), Q_c(x)$ with exactly two common roots. (b) For any $1 \le c \le 2017$, find the sum of the elements of $A_c \Delta B_c$.
2017 India IMO Training Camp
Practice Tests
Practice Test 1
Find all positive integers $p,q,r,s>1$ such that $$p!+q!+r!=2^s.$$
Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\Omega$ with $AC \perp BD$. Let $P=AC \cap BD$ and $W,X,Y,Z$ be the projections of $P$ on the lines $AB, BC, CD, DA$ respectively. Let $E,F,G,H$ be the mid-points of sides $AB, BC, CD, DA$ respectively. (a) Prove that $E,F,G,H,W,X,Y,Z$ are concyclic. (b) If $R$ is the radius of $\Omega$ and $d$ is the distance between its centre and $P$, then find the radius of the circle in (a) in terms of $R$ and $d$.
Practice Test 2
In an acute triangle $ABC$, points $D$ and $E$ lie on side $BC$ with $BD<BE$. Let $O_1, O_2, O_3, O_4, O_5, O_6$ be the circumcenters of triangles $ABD, ADE, AEC, ABE, ADC, ABC$, respectively. Prove that $O_1, O_3, O_4, O_5$ are con-cyclic if and only if $A, O_2, O_6$ are collinear.
Let $a,b,c,d$ be pairwise distinct positive integers such that $$\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}$$is an integer. Prove that $a+b+c+d$ is not a prime number.
There are $n$ lamps $L_1, L_2, \dots, L_n$ arranged in a circle in that order. At any given time, each lamp is either on or off. Every second, each lamp undergoes a change according to the following rule: (a) For each lamp $L_i$, if $L_{i-1}, L_i, L_{i+1}$ have the same state in the previous second, then $L_i$ is off right now. (Indices taken mod $n$.) (b) Otherwise, $L_i$ is on right now. Initially, all the lamps are off, except for $L_1$ which is on. Prove that for infinitely many integers $n$ all the lamps will be off eventually, after a finite amount of time.
Team Selection Tests
TST 1
Let $a,b,c$ be distinct positive real numbers with $abc=1$. Prove that $$\sum_{\text{cyc}} \frac{a^6}{(a-b)(a-c)}>15.$$
Define a sequence of integers $a_0=m, a_1=n$ and $a_{k+1}=4a_k-5a_{k-1}$ for all $k \ge 1$. Suppose $p>5$ is a prime with $p \equiv 1 \pmod{4}$. Prove that it is possible to choose $m,n$ such that $p \nmid a_k$ for any $k \ge 0$.
Let $n \ge 1$ be a positive integer. An $n \times n$ matrix is called good if each entry is a non-negative integer, the sum of entries in each row and each column is equal. A permutation matrix is an $n \times n$ matrix consisting of $n$ ones and $n(n-1)$ zeroes such that each row and each column has exactly one non-zero entry. Prove that any good matrix is a sum of finitely many permutation matrices.
TST 2
Suppose $f,g \in \mathbb{R}[x]$ are non constant polynomials. Suppose neither of $f,g$ is the square of a real polynomial but $f(g(x))$ is. Prove that $g(f(x))$ is not the square of a real polynomial.
Let $n$ be a positive integer relatively prime to $6$. We paint the vertices of a regular $n$-gon with three colours so that there is an odd number of vertices of each colour. Show that there exists an isosceles triangle whose three vertices are of different colours.
Let $B = (-1, 0)$ and $C = (1, 0)$ be fixed points on the coordinate plane. A nonempty, bounded subset $S$ of the plane is said to be nice if $\text{(i)}$ there is a point $T$ in $S$ such that for every point $Q$ in $S$, the segment $TQ$ lies entirely in $S$; and $\text{(ii)}$ for any triangle $P_1P_2P_3$, there exists a unique point $A$ in $S$ and a permutation $\sigma$ of the indices $\{1, 2, 3\}$ for which triangles $ABC$ and $P_{\sigma(1)}P_{\sigma(2)}P_{\sigma(3)}$ are similar. Prove that there exist two distinct nice subsets $S$ and $S'$ of the set $\{(x, y) : x \geq 0, y \geq 0\}$ such that if $A \in S$ and $A' \in S'$ are the unique choices of points in $\text{(ii)}$, then the product $BA \cdot BA'$ is a constant independent of the triangle $P_1P_2P_3$.
TST 3
Find all positive integers $n$ for which all positive divisors of $n$ can be put into the cells of a rectangular table under the following constraints: each cell contains a distinct divisor; the sums of all rows are equal; and the sums of all columns are equal.
Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.
Prove that for any positive integers $a$ and $b$ we have $$a+(-1)^b \sum^a_{m=0} (-1)^{\lfloor{\frac{bm}{a}\rfloor}} \equiv b+(-1)^a \sum^b_{n=0} (-1)^{\lfloor{\frac{an}{b}\rfloor}} \pmod{4}.$$
TST 4
Let $ABC$ be an acute angled triangle with incenter $I$. Line perpendicular to $BI$ at $I$ meets $BA$ and $BC$ at points $P$ and $Q$ respectively. Let $D, E$ be the incenters of $\triangle BIA$ and $\triangle BIC$ respectively. Suppose $D,P,Q,E$ lie on a circle. Prove that $AB=BC$.
For each $n \ge 2$ define the polynomial $$f_n(x)=x^n-x^{n-1}-\dots-x-1.$$Prove that (a) For each $n \ge 2$, $f_n(x)=0$ has a unique positive real root $\alpha_n$; (b) $(\alpha_n)_n$ is a strictly increasing sequence; (c) $\lim_{n \rightarrow \infty} \alpha_n=2.$
Let $a$ be a positive integer which is not a perfect square, and consider the equation \[k = \frac{x^2-a}{x^2-y^2}.\]Let $A$ be the set of positive integers $k$ for which the equation admits a solution in $\mathbb Z^2$ with $x>\sqrt{a}$, and let $B$ be the set of positive integers for which the equation admits a solution in $\mathbb Z^2$ with $0\leq x<\sqrt{a}$. Show that $A=B$.