2011 Turkey Team Selection Test

Day 1

1

Let $\mathbb{Q^+}$ denote the set of positive rational numbers. Determine all functions $f: \mathbb{Q^+} \to \mathbb{Q^+}$ that satisfy the conditions \[ f \left( \frac{x}{x+1}\right) = \frac{f(x)}{x+1} \qquad \text{and} \qquad f \left(\frac{1}{x}\right)=\frac{f(x)}{x^3}\] for all $x \in \mathbb{Q^+}.$

2

Let $I$ be the incenter and $AD$ be a diameter of the circumcircle of a triangle $ABC.$ If the point $E$ on the ray $BA$ and the point $F$ on the ray $CA$ satisfy the condition \[BE=CF=\frac{AB+BC+CA}{2}\] show that the lines $EF$ and $DI$ are perpendicular.

3

Let $A$ and $B$ be sets with $2011^2$ and $2010$ elements, respectively. Show that there is a function $f:A \times A \to B$ satisfying the condition $f(x,y)=f(y,x)$ for all $(x,y) \in A \times A$ such that for every function $g:A \to B$ there exists $(a_1,a_2) \in A \times A$ with $g(a_1)=f(a_1,a_2)=g(a_2)$ and $a_1 \neq a_2.$

Day 2

1

Let $D$ be a point different from the vertices on the side $BC$ of a triangle $ABC.$ Let $I, \: I_1$ and $I_2$ be the incenters of the triangles $ABC, \: ABD$ and $ADC,$ respectively. Let $E$ be the second intersection point of the circumcircles of the triangles $AI_1I$ and $ADI_2,$ and $F$ be the second intersection point of the circumcircles of the triangles $AII_2$ and $AI_1D.$ Prove that if $AI_1=AI_2,$ then \[ \frac{EI}{FI} \cdot \frac{ED}{FD}=\frac{{EI_1}^2}{{FI_1}^2}.\]

2

Let $a,b,c$ be positive real numbers satisfying $a^2+b^2+c^2 \geq 3.$ Prove that \[ \frac{(a+1)(b+2)}{(b+1)(b+5)} + \frac{(b+1)(c+2)}{(c+1)(c+5)}+\frac{(c+1)(a+2)}{(a+1)(a+5)} \geq \frac{3}{2} \]

3

Let $t(n)$ be the sum of the digits in the binary representation of a positive integer $n,$ and let $k \geq 2$ be an integer. a. Show that there exists a sequence $(a_i)_{i=1}^{\infty}$ of integers such that $a_m \geq 3$ is an odd integer and $t(a_1a_2 \cdots a_m)=k$ for all $m \geq 1.$ b. Show that there is an integer $N$ such that $t(3 \cdot 5 \cdots (2m+1))>k$ for all integers $m \geq N.$

Day 3

1

Let $K$ be a point in the interior of an acute triangle $ABC$ and $ARBPCQ$ be a convex hexagon whose vertices lie on the circumcircle $\Gamma$ of the triangle $ABC.$ Let $A_1$ be the second point where the circle passing through $K$ and tangent to $\Gamma$ at $A$ intersects the line $AP.$ The points $B_1$ and $C_1$ are defined similarly. Prove that \[ \min\left\{\frac{PA_1}{AA_1}, \: \frac{QB_1}{BB_1}, \: \frac{RC_1}{CC_1}\right\} \leq 1.\]

2

Graphistan has $2011$ cities and Graph Air (GA) is running one-way flights between all pairs of these cities. Determine the maximum possible value of the integer $k$ such that no matter how these flights are arranged it is possible to travel between any two cities in Graphistan riding only GA flights as long as the absolute values of the difference between the number of flights originating and terminating at any city is not more than $k.$

3

Let $p$ be a prime, $n$ be a positive integer, and let $\mathbb{Z}_{p^n}$ denote the set of congruence classes modulo $p^n.$ Determine the number of functions $f: \mathbb{Z}_{p^n} \to \mathbb{Z}_{p^n}$ satisfying the condition \[ f(a)+f(b) \equiv f(a+b+pab) \pmod{p^n} \] for all $a,b \in \mathbb{Z}_{p^n}.$