Let $I$ be the incenter and $AD$ be a diameter of the circumcircle of a triangle $ABC.$ If the point $E$ on the ray $BA$ and the point $F$ on the ray $CA$ satisfy the condition \[BE=CF=\frac{AB+BC+CA}{2}\] show that the lines $EF$ and $DI$ are perpendicular.
Problem
Source: Turkish TST 2011 Problem 2
Tags: geometry, incenter, circumcircle, geometric transformation, reflection, rhombus, symmetry
23.07.2011 15:59
Dear mathlinkers, a reference Sharygin I., Problema II 137, Problemas de geometria, Editions Mir (1986) 95. Sincerely Jean-Louis
23.07.2011 21:53
In fact, if $AB<AC$, then: $DE^2-DF^2=AC^2-AB^2=IE^2-IF^2$. Hence the result. [Edited]
05.04.2013 18:28
I had no idea what "karno"'s theorem was. Turns out it's Carnot's Theorem: http://en.wikipedia.org/wiki/Carnot's_theorem Thanks for teaching me something I didn't know!
27.12.2014 15:02
It's very easy for #2. Here my solution: Let $ O $ be the circumcenter of $ ABC $ and $ M $ be the midpoint of $ AI $.Then we have $ p(E,(M))-p(E,(O))=p(F,(M))-p(F,(O))=-(p-b)(p-c) $, so we are done.
27.12.2014 16:41
My solution: Let $ O $ be the circumcenter of $ \triangle ABC $ . Let $ I_a, I_b, I_c $ be the excenter of $ \triangle ABC $ and $ T=I_bE \cap I_cF $ . From the condition $ \Longrightarrow E, F $ is the tangent point of $ (I_b), (I_c) $ with $ AB, AC $, respectively , so $ A, E, F, T $ lie on a circle with diameter $ AT $ . ... $ ( \star ) $ Since $ I, O $ is the orthocenter, nine point center of $ \triangle I_aI_bI_c $, respectively , so the reflection $ I' $ of $ I $ in $ O $ is the circumcenter of $ \triangle I_aI_bI_c $ , hence from $ I'I_b \parallel TI_c, I'I_c \parallel TI_b $ and $ I'I_b=I'I_c $ we get $ I'I_bTI_c $ is a rhombus . Since $ AT, AI' $ are symmetry WRT $ I_bI_c $ , so we get $ AT, AI' $ are isogonal conjugate of $ \angle BAC $ , hence combine with $ (\star ) $ we get $ AI' \perp EF $ . ie. $ DI \perp EF $ ( $ \because AIDI' $ is a parallelogram ) Q.E.D
27.12.2014 22:35
Here is a solution that uses $0$ creativity but I need less than $5$ minutes to come up with.After a simple angle chase we deduce it to prove that $<BDI=<AEF$ and $<AFE=<CDI$,now apply sine rule in $BDI$ and$CDI$ and then $M$,$N$ be points where incircle touches $AB,AC$ and now apply sine rule $BIM$ and $CIN$ and we are finished(these is not trigo bashing cause this is just sine rule and it can easily be avoided).
09.09.2019 02:10
2003 Silk Road P2?
25.02.2020 22:25
Sardor wrote: It's very easy for #2. Here my solution: Let $ O $ be the circumcenter of $ ABC $ and $ M $ be the midpoint of $ AI $.Then we have $ p(E,(M))-p(E,(O))=p(F,(M))-p(F,(O))=-(p-b)(p-c) $, so we are done. Very nice solution Sardor!
11.04.2021 19:27
Let $M$ and $N$ be the feet of the perpendiculars from $I$ to $AB$ and $AC$, respectively. It suffices to prove that $ED^2+FI^2=DF^2+EI^2$. But $ED^2+FI^2=DF^2+EI^2\Leftrightarrow (EB^2+BD^2)+FI^2=(FC^2+CD^2)+EI^2\Leftrightarrow BD^2+FI^2=CD^2+EI^2\Leftrightarrow BD^2+(FN^2+NI^2)=CD^2+(EM^2+MI^2)\Leftrightarrow BD^2+FN^2=CD^2+EM^2\Leftrightarrow BD^2+AB^2=CD^2+AC^2$ , which is correct. Done.
14.07.2023 01:54
BarisKoyuncu wrote: Let $M$ and $N$ be the feet of the perpendiculars from $I$ to $AB$ and $AC$, respectively. It suffices to prove that $ED^2+FI^2=DF^2+EI^2$. But $ED^2+FI^2=DF^2+EI^2\Leftrightarrow (EB^2+BD^2)+FI^2=(FC^2+CD^2)+EI^2\Leftrightarrow BD^2+FI^2=CD^2+EI^2\Leftrightarrow BD^2+(FN^2+NI^2)=CD^2+(EM^2+MI^2)\Leftrightarrow BD^2+FN^2=CD^2+EM^2\Leftrightarrow BD^2+AB^2=CD^2+AC^2$ , which is correct. Done. BarisKoyuncu wrote: Let $M$ and $N$ be the feet of the perpendiculars from $I$ to $AB$ and $AC$, respectively. It suffices to prove that $ED^2+FI^2=DF^2+EI^2$. But $ED^2+FI^2=DF^2+EI^2\Leftrightarrow (EB^2+BD^2)+FI^2=(FC^2+CD^2)+EI^2\Leftrightarrow BD^2+FI^2=CD^2+EI^2\Leftrightarrow BD^2+(FN^2+NI^2)=CD^2+(EM^2+MI^2)\Leftrightarrow BD^2+FN^2=CD^2+EM^2\Leftrightarrow BD^2+AB^2=CD^2+AC^2$ , which is correct. Done. This is a nice solution!! I didn't think about using Pythagoras theorem for the 90-degree angle.