Let $p$ be an odd prime and $r$ an odd natural number.Show that $pr+1$ does not divide $p^p-1$
2014 India IMO Training Camp
Practice Test 1
April 27th
Let $a,b$ be positive real numbers.Prove that $(1+a)^{8}+(1+b)^{8}\geq 128ab(a+b)^{2}$.
In a triangle $ABC$, points $X$ and $Y$ are on $BC$ and $CA$ respectively such that $CX=CY$,$AX$ is not perpendicular to $BC$ and $BY$ is not perpendicular to $CA$.Let $\Gamma$ be the circle with $C$ as centre and $CX$ as its radius.Find the angles of triangle $ABC$ given that the orthocentres of triangles $AXB$ and $AYB$ lie on $\Gamma$.
Practice Test 2
May 2nd
Let $x$ and $y$ be rational numbers, such that $x^{5}+y^{5}=2x^{2}y^{2}$. Prove that $1-xy$ is the square of a rational number.
Let $n$ be a natural number.A triangulation of a convex n-gon is a division of the polygon into $n-2$ triangles by drawing $n-3$ diagonals no two of which intersect at an interior point of the polygon.Let $f(n)$ denote the number of triangulations of a regular n-gon such that each of the triangles formed is isosceles.Determine $f(n)$ in terms of $n$.
For integers $a,b$ we define $f((a,b))=(2a,b-a)$ if $a<b$ and $f((a,b))=(a-b,2b)$ if $a\geq b$. Given a natural number $n>1$ show that there exist natural numbers $m,k$ with $m<n$ such that $f^{k}((n,m))=(m,n)$,where $f^{k}(x)=f(f(f(...f(x))))$,$f$ being composed with itself $k$ times.
TST 1
May 7th
Find all polynomials $f(x)$ with integer coefficients such that $f(n)$ and $f(2^{n})$ are co-prime for all natural numbers $n$.
Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.
Starting with the triple $(1007\sqrt{2},2014\sqrt{2},1007\sqrt{14})$, define a sequence of triples $(x_{n},y_{n},z_{n})$ by $x_{n+1}=\sqrt{x_{n}(y_{n}+z_{n}-x_{n})}$ $y_{n+1}=\sqrt{y_{n}(z_{n}+x_{n}-y_{n})}$ $ z_{n+1}=\sqrt{z_{n}(x_{n}+y_{n}-z_{n})}$ for $n\geq 0$.Show that each of the sequences $\langle x_n\rangle _{n\geq 0},\langle y_n\rangle_{n\geq 0},\langle z_n\rangle_{n\geq 0}$ converges to a limit and find these limits.
TST 2
May 8th
In a triangle $ABC$, let $I$ be its incenter; $Q$ the point at which the incircle touches the line $AC$; $E$ the midpoint of $AC$ and $K$ the orthocenter of triangle $BIC$. Prove that the line $KQ$ is perpendicular to the line $IE$.
For $j=1,2,3$ let $x_{j},y_{j}$ be non-zero real numbers, and let $v_{j}=x_{j}+y_{j}$.Suppose that the following statements hold: $x_{1}x_{2}x_{3}=-y_{1}y_{2}y_{3}$ $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=y_{1}^{2}+y_{2}^{2}+y_{3}^2$ $v_{1},v_{2},v_{3}$ satisfy triangle inequality $v_{1}^{2},v_{2}^{2},v_{3}^{2}$ also satisfy triangle inequality. Prove that exactly one of $x_{1},x_{2},x_{3},y_{1},y_{2},y_{3}$ is negative.
Let $r$ be a positive integer, and let $a_0 , a_1 , \cdots $ be an infinite sequence of real numbers. Assume that for all nonnegative integers $m$ and $s$ there exists a positive integer $n \in [m+1, m+r]$ such that \[ a_m + a_{m+1} +\cdots +a_{m+s} = a_n + a_{n+1} +\cdots +a_{n+s} \] Prove that the sequence is periodic, i.e. there exists some $p \ge 1 $ such that $a_{n+p} =a_n $ for all $n \ge 0$.
TST 3
May 14th
In a triangle $ABC$, with $AB\neq AC$ and $A\neq 60^{0},120^{0}$, $D$ is a point on line $AC$ different from $C$. Suppose that the circumcentres and orthocentres of triangles $ABC$ and $ABD$ lie on a circle. Prove that $\angle ABD=\angle ACB$.
Determine whether there exists an infinite sequence of nonzero digits $a_1 , a_2 , a_3 , \cdots $ and a positive integer $N$ such that for every integer $k > N$, the number $\overline{a_k a_{k-1}\cdots a_1 }$ is a perfect square.
In how many ways rooks can be placed on a $8$ by $8$ chess board such that every row and every column has at least one rook? (Any number of rooks are available,each square can have at most one rook and there is no relation of attacking between them)
TST 4
May 15th
Prove that in any set of $2000$ distinct real numbers there exist two pairs $a>b$ and $c>d$ with $a \neq c$ or $b \neq d $, such that \[ \left| \frac{a-b}{c-d} - 1 \right|< \frac{1}{100000}. \]
Find all positive integers $x$ and $y$ such that $x^{x+y}=y^{3x}$.
Let $ABC$ be a triangle with $\angle B > \angle C$. Let $P$ and $Q$ be two different points on line $AC$ such that $\angle PBA = \angle QBA = \angle ACB $ and $A$ is located between $P$ and $C$. Suppose that there exists an interior point $D$ of segment $BQ$ for which $PD=PB$. Let the ray $AD$ intersect the circle $ABC$ at $R \neq A$. Prove that $QB = QR$.