Problem

Source: IMO Shortlist 2013, Combinatorics #5

Tags: function, combinatorics, Additive combinatorics, Sequence, IMO Shortlist



Let $r$ be a positive integer, and let $a_0 , a_1 , \cdots $ be an infinite sequence of real numbers. Assume that for all nonnegative integers $m$ and $s$ there exists a positive integer $n \in [m+1, m+r]$ such that \[ a_m + a_{m+1} +\cdots +a_{m+s} = a_n + a_{n+1} +\cdots +a_{n+s} \] Prove that the sequence is periodic, i.e. there exists some $p \ge 1 $ such that $a_{n+p} =a_n $ for all $n \ge 0$.