The quadrilateral $ABCD$ is inscribed in circle $\omega$. $F$ is the intersection point of $AC$ and $BD$. $BA$ and $CD$ meet at $E$. Let the projection of $F$ on $AB$ and $CD$ be $G$ and $H$, respectively. Let $M$ and $N$ be the midpoints of $BC$ and $EF$, respectively. If the circumcircle of $\triangle MNG$ only meets segment $BF$ at $P$, and the circumcircle of $\triangle MNH$ only meets segment $CF$ at $Q$, prove that $PQ$ is parallel to $BC$.
2013 China Team Selection Test
March 13th - Day 1
For the positive integer $n$, define $f(n)=\min\limits_{m\in\Bbb Z}\left|\sqrt2-\frac mn\right|$. Let $\{n_i\}$ be a strictly increasing sequence of positive integers. $C$ is a constant such that $f(n_i)<\dfrac C{n_i^2}$ for all $i\in\{1,2,\ldots\}$. Show that there exists a real number $q>1$ such that $n_i\geqslant q^{i-1}$ for all $i\in\{1,2,\ldots \}$.
There are$n$ balls numbered $1,2,\cdots,n$, respectively. They are painted with $4$ colours, red, yellow, blue, and green, according to the following rules: First, randomly line them on a circle. Then let any three clockwise consecutive balls numbered $i, j, k$, in order. 1) If $i>j>k$, then the ball $j$ is painted in red; 2) If $i<j<k$, then the ball $j$ is painted in yellow; 3) If $i<j, k<j$, then the ball $j$ is painted in blue; 4) If $i>j, k>j$, then the ball $j$ is painted in green. And now each permutation of the balls determine a painting method. We call two painting methods distinct, if there exists a ball, which is painted with two different colours in that two methods. Find out the number of all distinct painting methods.
March 14th - Day 2
Let $n$ and $k$ be two integers which are greater than $1$. Let $a_1,a_2,\ldots,a_n,c_1,c_2,\ldots,c_m$ be non-negative real numbers such that i) $a_1\ge a_2\ge\ldots\ge a_n$ and $a_1+a_2+\ldots+a_n=1$; ii) For any integer $m\in\{1,2,\ldots,n\}$, we have that $c_1+c_2+\ldots+c_m\le m^k$. Find the maximum of $c_1a_1^k+c_2a_2^k+\ldots+c_na_n^k$.
Let $P$ be a given point inside the triangle $ABC$. Suppose $L,M,N$ are the midpoints of $BC, CA, AB$ respectively and \[PL: PM: PN= BC: CA: AB.\] The extensions of $AP, BP, CP$ meet the circumcircle of $ABC$ at $D,E,F$ respectively. Prove that the circumcentres of $APF, APE, BPF, BPD, CPD, CPE$ are concyclic.
Find all positive real numbers $r<1$ such that there exists a set $\mathcal{S}$ with the given properties: i) For any real number $t$, exactly one of $t, t+r$ and $t+1$ belongs to $\mathcal{S}$; ii) For any real number $t$, exactly one of $t, t-r$ and $t-1$ belongs to $\mathcal{S}$.
March 18th - Day 3
For a positive integer $k\ge 2$ define $\mathcal{T}_k=\{(x,y)\mid x,y=0,1,\ldots, k-1\}$ to be a collection of $k^2$ lattice points on the cartesian coordinate plane. Let $d_1(k)>d_2(k)>\cdots$ be the decreasing sequence of the distinct distances between any two points in $T_k$. Suppose $S_i(k)$ be the number of distances equal to $d_i(k)$. Prove that for any three positive integers $m>n>i$ we have $S_i(m)=S_i(n)$.
Prove that: there exists a positive constant $K$, and an integer series $\{a_n\}$, satisfying: $(1)$ $0<a_1<a_2<\cdots <a_n<\cdots $; $(2)$ For any positive integer $n$, $a_n<1.01^n K$; $(3)$ For any finite number of distinct terms in $\{a_n\}$, their sum is not a perfect square.
Let $A$ be a set consisting of 6 points in the plane. denoted $n(A)$ as the number of the unit circles which meet at least three points of $A$. Find the maximum of $n(A)$
March 19th - Day 4
For a positive integer $N>1$ with unique factorization $N=p_1^{\alpha_1}p_2^{\alpha_2}\dotsb p_k^{\alpha_k}$, we define \[\Omega(N)=\alpha_1+\alpha_2+\dotsb+\alpha_k.\] Let $a_1,a_2,\dotsc, a_n$ be positive integers and $p(x)=(x+a_1)(x+a_2)\dotsb (x+a_n)$ such that for all positive integers $k$, $\Omega(P(k))$ is even. Show that $n$ is an even number.
Find the greatest positive integer $m$ with the following property: For every permutation $a_1, a_2, \cdots, a_n,\cdots$ of the set of positive integers, there exists positive integers $i_1<i_2<\cdots <i_m$ such that $a_{i_1}, a_{i_2}, \cdots, a_{i_m}$ is an arithmetic progression with an odd common difference.
Let $n>1$ be an integer and let $a_0,a_1,\ldots,a_n$ be non-negative real numbers. Definite $S_k=\sum_{i=0}^k \binom{k}{i}a_i$ for $k=0,1,\ldots,n$. Prove that\[\frac{1}{n} \sum_{k=0}^{n-1} S_k^2-\frac{1}{n^2}\left(\sum_{k=0}^{n} S_k\right)^2\le \frac{4}{45} (S_n-S_0)^2.\]
March 24th - Day 5
Let $n\ge 2$ be an integer. $a_1,a_2,\dotsc,a_n$ are arbitrarily chosen positive integers with $(a_1,a_2,\dotsc,a_n)=1$. Let $A=a_1+a_2+\dotsb+a_n$ and $(A,a_i)=d_i$. Let $(a_2,a_3,\dotsc,a_n)=D_1, (a_1,a_3,\dotsc,a_n)=D_2,\dotsc, (a_1,a_2,\dotsc,a_{n-1})=D_n$. Find the minimum of $\prod\limits_{i=1}^n\dfrac{A-a_i}{d_iD_i}$
The circumcircle of triangle $ABC$ has centre $O$. $P$ is the midpoint of $\widehat{BAC}$ and $QP$ is the diameter. Let $I$ be the incentre of $\triangle ABC$ and let $D$ be the intersection of $PI$ and $BC$. The circumcircle of $\triangle AID$ and the extension of $PA$ meet at $F$. The point $E$ lies on the line segment $PD$ such that $DE=DQ$. Let $R,r$ be the radius of the inscribed circle and circumcircle of $\triangle ABC$, respectively. Show that if $\angle AEF=\angle APE$, then $\sin^2\angle BAC=\dfrac{2r}R$
$101$ people, sitting at a round table in any order, had $1,2,... , 101$ cards, respectively. A transfer is someone give one card to one of the two people adjacent to him. Find the smallest positive integer $k$ such that there always can through no more than $ k $ times transfer, each person hold cards of the same number, regardless of the sitting order.
March 25th - Day 6
Let $p$ be a prime number and $a, k$ be positive integers such that $p^a<k<2p^a$. Prove that there exists a positive integer $n$ such that \[n<p^{2a}, C_n^k\equiv n\equiv k\pmod {p^a}.\]
Let $k\ge 2$ be an integer and let $a_1 ,a_2 ,\cdots ,a_n,b_1 ,b_2 ,\cdots ,b_n$ be non-negative real numbers. Prove that\[\left(\frac{n}{n-1}\right)^{n-1}\left(\frac{1}{n} \sum_{i=1}^{n} a_i^2\right)+\left(\frac{1}{n} \sum_{i=1}^{n} b_i\right)^2\ge\prod_{i=1}^{n}(a_i^{2}+b_i^{2})^{\frac{1}{n}}.\]
A point $(x,y)$ is a lattice point if $x,y\in\Bbb Z$. Let $E=\{(x,y):x,y\in\Bbb Z\}$. In the coordinate plane, $P$ and $Q$ are both sets of points in and on the boundary of a convex polygon with vertices on lattice points. Let $T=P\cap Q$. Prove that if $T\ne\emptyset$ and $T\cap E=\emptyset$, then $T$ is a non-degenerate convex quadrilateral region.