2003 China Team Selection Test

TST

Day 1

1

$ABC$ is an acute-angled triangle. Let $D$ be the point on $BC$ such that $AD$ is the bisector of $\angle A$. Let $E, F$ be the feet of perpendiculars from $D$ to $AC,AB$ respectively. Suppose the lines $BE$ and $CF$ meet at $H$. The circumcircle of triangle $AFH$ meets $BE$ at $G$ (apart from $H$). Prove that the triangle constructed from $BG$, $GE$ and $BF$ is right-angled.

2

Suppose $A\subseteq \{0,1,\dots,29\}$. It satisfies that for any integer $k$ and any two members $a,b\in A$($a,b$ is allowed to be same), $a+b+30k$ is always not the product of two consecutive integers. Please find $A$ with largest possible cardinality.

3

Suppose $A\subset \{(a_1,a_2,\dots,a_n)\mid a_i\in \mathbb{R},i=1,2\dots,n\}$. For any $\alpha=(a_1,a_2,\dots,a_n)\in A$ and $\beta=(b_1,b_2,\dots,b_n)\in A$, we define \[ \gamma(\alpha,\beta)=(|a_1-b_1|,|a_2-b_2|,\dots,|a_n-b_n|), \] \[ D(A)=\{\gamma(\alpha,\beta)\mid\alpha,\beta\in A\}. \] Please show that $|D(A)|\geq |A|$.

Day 2

1

Find all functions $f: \mathbb{Z}^+\to \mathbb{R}$, which satisfies $f(n+1)\geq f(n)$ for all $n\geq 1$ and $f(mn)=f(m)f(n)$ for all $(m,n)=1$.

2

Suppose $A=\{1,2,\dots,2002\}$ and $M=\{1001,2003,3005\}$. $B$ is an non-empty subset of $A$. $B$ is called a $M$-free set if the sum of any two numbers in $B$ does not belong to $M$. If $A=A_1\cup A_2$, $A_1\cap A_2=\emptyset$ and $A_1,A_2$ are $M$-free sets, we call the ordered pair $(A_1,A_2)$ a $M$-partition of $A$. Find the number of $M$-partitions of $A$.

3

Let $ \left(x_{n}\right)$ be a real sequence satisfying $ x_{0}=0$, $ x_{2}=\sqrt[3]{2}x_{1}$, and $ x_{n+1}=\frac{1}{\sqrt[3]{4}}x_{n}+\sqrt[3]{4}x_{n-1}+\frac{1}{2}x_{n-2}$ for every integer $ n\geq 2$, and such that $ x_{3}$ is a positive integer. Find the minimal number of integers belonging to this sequence.

Quiz 1

1

$x$, $y$ and $z$ are positive reals such that $x+y+z=xyz$. Find the minimum value of: \[ x^7(yz-1)+y^7(zx-1)+z^7(xy-1) \]

2

In triangle $ABC$, the medians and bisectors corresponding to sides $BC$, $CA$, $AB$ are $m_a$, $m_b$, $m_c$ and $w_a$, $w_b$, $w_c$ respectively. $P=w_a \cap m_b$, $Q=w_b \cap m_c$, $R=w_c \cap m_a$. Denote the areas of triangle $ABC$ and $PQR$ by $F_1$ and $F_2$ respectively. Find the least positive constant $m$ such that $\frac{F_1}{F_2}<m$ holds for any $\triangle{ABC}$.

3

There is a frog in every vertex of a regular 2n-gon with circumcircle($n \geq 2$). At certain time, all frogs jump to the neighborhood vertices simultaneously (There can be more than one frog in one vertex). We call it as $\textsl{a way of jump}$. It turns out that there is $\textsl{a way of jump}$ with respect to 2n-gon, such that the line connecting any two distinct vertice having frogs on it after the jump, does not pass through the circumcentre of the 2n-gon. Find all possible values of $n$.

Quiz 2

1

Let $ ABCD$ be a quadrilateral which has an incircle centered at $ O$. Prove that \[ OA\cdot OC+OB\cdot OD=\sqrt{AB\cdot BC\cdot CD\cdot DA}\]

2

Let $x<y$ be positive integers and $P=\frac{x^3-y}{1+xy}$. Find all integer values that $P$ can take.

Click for solution If $x=p^{3}$, $y=p^{5}-p$, then $\frac{x^{3}-y}{1+xy}=\frac{p^{9}-p^{5}+p}{1+p^{8}-p^{4}}=p$ and $0<x<y$ for $p\geq 2$? so $p\geq 2$ are good numbers. $p=0$ is also good (for example, $x=2, y=8$). If $p\leq-1$, then $y-x^{3}\geq 1+xy$ $x>xy$ - contradiction. If $p=1$, then $x^{3}-1=(x+1)y$ $x+1\mid x^{3}-1$ and $x+1\mid 2$, because $x+1\mid x^{3}+1$ $x=1$, hence $y=0$ - contradiction with beeing $y$ positive. So, answer is $p\geq 2$ and $p=0$.

3

The $ n$ roots of a complex coefficient polynomial $ f(z) = z^n + a_1z^{n - 1} + \cdots + a_{n - 1}z + a_n$ are $ z_1, z_2, \cdots, z_n$. If $ \sum_{k = 1}^n |a_k|^2 \leq 1$, then prove that $ \sum_{k = 1}^n |z_k|^2 \leq n$.

Quiz 3

1

$m$ and $n$ are positive integers. Set $A=\{ 1, 2, \cdots, n \}$. Let set $B_{n}^{m}=\{ (a_1, a_2 \cdots, a_m) \mid a_i \in A, i= 1, 2, \cdots, m \}$ satisfying: (1) $|a_i - a_{i+1}| \neq n-1$, $i=1,2, \cdots, m-1$; and (2) at least three of $a_1, a_2, \cdots, a_m$ ($m \geq 3$) are pairwise distince. Find $|B_n^m|$ and $|B_6^3|$.

2

Can we find positive reals $a_1, a_2, \dots, a_{2002}$ such that for any positive integer $k$, with $1 \leq k \leq 2002$, every complex root $z$ of the following polynomial $f(x)$ satisfies the condition $|\text{Im } z| \leq |\text{Re } z|$, \[f(x)=a_{k+2001}x^{2001}+a_{k+2000}x^{2000}+ \cdots + a_{k+1}x+a_k,\]where $a_{2002+i}=a_i$, for $i=1,2, \dots, 2001$.

3

Let $x_0+\sqrt{2003}y_0$ be the minimum positive integer root of Pell function $x^2-2003y^2=1$. Find all the positive integer solutions $(x,y)$ of the equation, such that $x_0$ is divisible by any prime factor of $x$.

Quiz 4

1

In triangle $ABC$, $AB > BC > CA$, $AB=6$, $\angle{B}-\angle{C}=90^o$. The incircle touches $BC$ at $E$ and $EF$ is a diameter of the incircle. Radical $AF$ intersect $BC$ at $D$. $DE$ equals to the circumradius of $\triangle{ABC}$. Find $BC$ and $AC$.

2

Find all functions $f,g$:$R \to R$ such that $f(x+yg(x))=g(x)+xf(y)$ for $x,y \in R$.

3

Let $A= \{a_1,a_2, \cdots, a_n \}$ and $B=\{b_1,b_2 \cdots, b_n \}$ be two positive integer sets and $|A \cap B|=1$. $C= \{ \text{all the 2-element subsets of A} \} \cup \{ \text{all the 2-element subsets of B} \}$. Function $f: A \cup B \to \{ 0, 1, 2, \cdots 2 C_n^2 \}$ is injective. For any $\{x,y\} \in C$, denote $|f(x)-f(y)|$ as the $\textsl{mark}$ of $\{x,y\}$. If $n \geq 6$, prove that at least two elements in $C$ have the same $\textsl{mark}$.

Quiz 5

1

Let $S$ be the set of points inside and on the boarder of a regular haxagon with side length 1. Find the least constant $r$, such that there exists one way to colour all the points in $S$ with three colous so that the distance between any two points with same colour is less than $r$.

2

Denote by $\left(ABC\right)$ the circumcircle of a triangle $ABC$. Let $ABC$ be an isosceles right-angled triangle with $AB=AC=1$ and $\measuredangle CAB=90^{\circ}$. Let $D$ be the midpoint of the side $BC$, and let $E$ and $F$ be two points on the side $BC$. Let $M$ be the point of intersection of the circles $\left(ADE\right)$ and $\left(ABF\right)$ (apart from $A$). Let $N$ be the point of intersection of the line $AF$ and the circle $\left(ACE\right)$ (apart from $A$). Let $P$ be the point of intersection of the line $AD$ and the circle $\left(AMN\right)$. Find the length of $AP$.

3

Sequence $\{ a_n \}$ satisfies: $a_1=3$, $a_2=7$, $a_n^2+5=a_{n-1}a_{n+1}$, $n \geq 2$. If $a_n+(-1)^n$ is prime, prove that there exists a nonnegative integer $m$ such that $n=3^m$.

Quiz 6

1

Let $g(x)= \sum_{k=1}^{n} a_k \cos{kx}$, $a_1,a_2, \cdots, a_n, x \in R$. If $g(x) \geq -1$ holds for every $x \in R$, prove that $\sum_{k=1}^{n}a_k \leq n$.

2

Positive integer $n$ cannot be divided by $2$ and $3$, there are no nonnegative integers $a$ and $b$ such that $|2^a-3^b|=n$. Find the minimum value of $n$.

3

(1) $D$ is an arbitary point in $\triangle{ABC}$. Prove that: \[ \frac{BC}{\min{AD,BD,CD}} \geq \{ \begin{array}{c} \displaystyle 2\sin{A}, \ \angle{A}< 90^o \\ \\ 2, \ \angle{A} \geq 90^o \end{array} \] (2)$E$ is an arbitary point in convex quadrilateral $ABCD$. Denote $k$ the ratio of the largest and least distances of any two points among $A$, $B$, $C$, $D$, $E$. Prove that $k \geq 2\sin{70^o}$. Can equality be achieved?

Quiz 7

1

There are $n$($n\geq 3$) circles in the plane, all with radius $1$. In among any three circles, at least two have common point(s), then the total area covered by these $n$ circles is less than $35$.

2

Given an integer $a_1$($a_1 \neq -1$), find a real number sequence $\{ a_n \}$($a_i \neq 0, i=1,2,\cdots,5$) such that $x_1,x_2,\cdots,x_5$ and $y_1,y_2,\cdots,y_5$ satisfy $b_{i1}x_1+b_{i2}x_2+\cdots +b_{i5}x_5=2y_i$, $i=1,2,3,4,5$, then $x_1y_1+x_2y_2+\cdots+x_5y_5=0$, where $b_{ij}=\prod_{1 \leq k \leq i} (1+ja_k)$.

3

Given $S$ be the finite lattice (with integer coordinate) set in the $xy$-plane. $A$ is the subset of $S$ with most elements such that the line connecting any two points in $A$ is not parallel to $x$-axis or $y$-axis. $B$ is the subset of integer with least elements such that for any $(x,y)\in S$, $x \in B$ or $y \in B$ holds. Prove that $|A| \geq |B|$.

Quiz 8

1

Triangle $ABC$ is inscribed in circle $O$. Tangent $PD$ is drawn from $A$, $D$ is on ray $BC$, $P$ is on ray $DA$. Line $PU$ ($U \in BD$) intersects circle $O$ at $Q$, $T$, and intersect $AB$ and $AC$ at $R$ and $S$ respectively. Prove that if $QR=ST$, then $PQ=UT$.

2

Let $S$ be a finite set. $f$ is a function defined on the subset-group $2^S$ of set $S$. $f$ is called $\textsl{monotonic decreasing}$ if when $X \subseteq Y\subseteq S$, then $f(X) \geq f(Y)$ holds. Prove that: $f(X \cup Y)+f(X \cap Y ) \leq f(X)+ f(Y)$ for $X, Y \subseteq S$ if and only if $g(X)=f(X \cup \{ a \}) - f(X)$ is a $\textsl{monotonic decreasing}$ funnction on the subset-group $2^{S \setminus \{a\}}$ of set $S \setminus \{a\}$ for any $a \in S$.

3

Let $a_{1},a_{2},...,a_{n}$ be positive real number $(n \geq 2)$,not all equal,such that $\sum_{k=1}^n a_{k}^{-2n}=1$,prove that: $\sum_{k=1}^n a_{k}^{2n}-n^2.\sum_{1 \leq i<j \leq n}(\frac{a_{i}}{a_{j}}-\frac{a_{j}}{a_{i}})^2 >n^2$