Let $ ABCD$ be a quadrilateral which has an incircle centered at $ O$. Prove that \[ OA\cdot OC+OB\cdot OD=\sqrt{AB\cdot BC\cdot CD\cdot DA}\]
Problem
Source: Chinese TST 2003
Tags: geometry, trigonometry, calculus, geometry proposed
21.11.2005 11:02
Beautiful identity! I have just uploaded a note, "Circumscribed quadrilaterals revisited", on my website ( http://www.cip.ifi.lmu.de/~grinberg/ ), where this identity is Theorem 10 and a synthetic proof is given. Hope you will like it (although you will probably find most of the stuff quite well-known). Darij
22.11.2005 13:40
Very nice identity ! Thanks, Mekrazywong ! Indeed, this problem is totally trivial by trigonometry. It is equivalently with the following conditioned identity: $x+y+z+t=\pi\Longrightarrow\cos x\cdot \cos z +\cos y\cdot \cos t =\sin (x+y)\cdot \sin (y+z)\ \ (1)$. Really it isn't worth proving syntetically, at the most a syntetical prove for the conditioned identity (1) ! Remark. In general, $\cos x\cdot \cos z+\cos y\cdot \cos t =\sin (x+y)\cdot\sin (y+z)\Longleftrightarrow$$\cos \frac{x+y+z+t}{2}\cdot \cos y\cdot \cos \frac{x+y+z-t}{2}=0$. Mekrazywong and Darij, can give you a geometrical interpretation (for a quadrilateral, without circumscribed) of this equivalence ?
22.11.2005 16:00
First of all, I would like to clarify here this result was not due to me. Actually this is a problem from Chinese TST 2003, proposed by a Chinese professor. By the way, there is a really simple solution via spiral similarity.
22.06.2007 13:34
Denote by $ a=AB$, $ b=BC$, $ c=CD$, $ d=DA$ the lengths of the sides of $ ABCD$. Let $ r$ be the ray of the inscribed circle. Then $ OA =\frac{r}{\sin\frac{A}{2}},OB =\frac{r}{\sin\frac{B}{2}},OC =\frac{r}{\sin\frac{C}{2}},OD =\frac{r}{\sin\frac{C}{2}}$. Let $ M$ be the point where $ AB$ touches the circle. Then $ AM = rctg\frac{A}{2},\ MB = rctg\frac{B}{2}\Rightarrow a = AM+MB = r\cdot\frac{\sin\frac{A+B}{2}}{\sin\frac{A}{2}\sin\frac{B}{2}}$, $ b = r\cdot\frac{\sin\frac{B+C}{2}}{\sin\frac{B}{2}\sin\frac{C}{2}},c = r\cdot\frac{\sin\frac{C+D}{2}}{\sin\frac{C}{2}\sin\frac{D}{2}},d = r\cdot\frac{\sin\frac{D+A}{2}}{\sin\frac{D}{2}\sin\frac{A}{2}}$. Replacing $ OA,OB,OC,OD,a,b,c,d$, making some calculus and using the equalities $ \sin\frac{A+B}{2}=\sin\frac{C+D}{2}, sin\frac{B+C}{2}=\sin\frac{A+D}{2}$, the relation becomes $ \sin\frac{A}{2}\sin\frac{C}{2}+\sin\frac{B}{2}\sin\frac{D}{2}=\sin\frac{A+B}{2}\sin\frac{B+C}{2}$. But $ \sin\frac{A}{2}\sin\frac{C}{2}+\sin\frac{B}{2}\sin\frac{D}{2}=\frac{1}{2}\left[\cos\frac{A-C}{2}-\cos\frac{A+C}{2}+\cos\frac{B-D}{2}-\cos\frac{B+D}{2}\right] =$ $ =\frac{1}{2}\left(\cos\frac{A-C}{2}+\cos\frac{B-D}{2}\right) =\sin\frac{A+B}{2}\sin\frac{B+C}{2}$.
07.02.2009 10:42
use this lemma : we have that $ AB.BC = OB^{2} + \frac {OA.OB.OC}{OD}$
11.11.2014 15:48
My solution: Let $ E $ be a point satisfy $ \triangle CDE \sim \triangle BAO $ . Since $ C, D, E, O $ are concyclic , so from Ptolemy theorem we get $ DE \cdot OC+CE\cdot OD=CD\cdot OE $ . ... $ (1) $ Since $ \frac{DE}{OA}=\frac{CE}{OB}=\frac{CD}{AB} $ , so from $ (1) $ we get $ OA\cdot OC+OB\cdot OD=AB\cdot OE $ . ... $ (2) $ Since $ \angle EOD=\angle ECD=\angle OBA=\angle CBO , \angle DEO=\angle DCO=\angle OCB $ , so we get $ \triangle DOE \sim \triangle OBC $ and $ \frac{OE}{BC}=\frac{OD}{OB} $ . ... $ (3) $ Similarly, we can prove $ \triangle OCE \sim \triangle AOD $ and $ \frac{OE}{DA}=\frac{CE}{OD} $ . ... $ (4) $ From $ (3), (4) $ we get $ \frac{OE^2}{BC\cdot DA}=\frac{CE}{OB}=\frac{CD}{AB} $ . ... $ (5) $ From $ (2), (5) $ we get $ (OA\cdot OC+OB\cdot OD)^2=AB^2\cdot \frac{BC\cdot CD\cdot DA}{AB}=AB\cdot BC\cdot CD\cdot DA $ . Q.E.D
24.06.2020 11:08
Dear Mathlinkers, http://jl.ayme.pagesperso-orange.fr/Docs/Quadrilatere%20circonscriptible.pdf p. 7... Sincerely Jean-Louis
05.08.2021 19:45
chinese tst. Just consider the point of tangencies as $KEK'W$.Let $F$ be $KK' \cap EW$ Then consider a projective transformation that fixes the incircle and sends $F$ to the center of the incircle. Now ,we just have to prove the problem for a rhombus which is a mere Pythagorean .
26.11.2021 06:46
Solved with Max Lu. The work here is almost entirely copy-pasted from our work on USAMO 2004/6 . Let the incircle have radius $r$, and let the lengths of the tangents from $A,B,C,D$ be $a,b,c,d$. Then, note that \[(w+ri)(x+ri)(y+ri)(z+ri) \text{is a negative real number}\]since the argument of it is $\frac{A}{2}+\frac{B}{2}+\frac{C}{2}+\frac{D}{2}=180$. Thus, we have $r\cdot \sum_{cyc} wxy - r^3 \sum_{cyc} a = 0\Longrightarrow r^2 = \frac{\sum_{cyc} wxy}{\sum_{cyc} w}$. Now, note that this gives \[a^2+r^2 = a^2 + \frac{\sum abc}{\sum a} = \frac{a^2\sum a + \sum abc}{\sum a} = \frac{(a+b)(a+c)(a+d)}{\sum a}\] Using this, we get that \[OA\cdot OC + OB\cdot OD = \sqrt{\frac{(a+b)(a+c)(a+d)}{a+b+c+d}} \cdot \sqrt{\frac{(a+c)(b+c)(c+d)}{a+b+c+d}}+ \sqrt{\frac{(a+b)(b+c)(b+d)}{a+b+c+d}} \cdot \sqrt{\frac{(a+d)(b+d)(c+d)}{a+b+c+d}} \]\[= \frac{((a+c)+(b+d)) \sqrt{(a+b)(a+d)(b+c)(c+d)}}{a+b+c+d} = \sqrt{AB\cdot BC\cdot CD\cdot DA}\]and we're done!
26.11.2021 16:02
Let $X,Y,Z,W$ be touch points of the incircle of $ABCD$ and sides $DA,AB,BC,CA$, respectively. Let $A^*,B^*,C^*,D^*$ denote the inverses of $A,B,C,D$ of an inversion around $(XYZW)$, respectively. Note that $A^*,B^*,C^*,D^*$ are the midpoints of $XY,YZ,ZW,WX$, respectively. [asy][asy] import olympiad;import geometry; size(8cm);defaultpen(fontsize(10pt)); pair A,B,C,D,X,Y,Z,W,O,A0,B0,C0,D0; X=dir(110);Y=dir(205);Z=dir(280);W=dir(10);O=(0,0); A=intersectionpoint(perpendicular(X, line(X,O) ),perpendicular(Y, line(Y,O) )); B=intersectionpoint(perpendicular(Y, line(Y,O) ),perpendicular(Z, line(Z,O) )); C=intersectionpoint(perpendicular(Z, line(Z,O) ),perpendicular(W, line(W,O) )); D=intersectionpoint(perpendicular(W, line(W,O) ),perpendicular(X, line(X,O) )); A0=midpoint(X--Y);B0=midpoint(Y--Z);C0=midpoint(Z--W);D0=midpoint(W--X); draw(circumcircle(X,Y,Z),royalblue);draw(A--B--C--D--cycle,heavyred+1);draw(A0--B0--C0--D0--cycle, fuchsia);draw(X--Y--Z--W--cycle, red+0.5); draw(A--O--B,palered+1);draw(C--O--D,palered+1); dot("$O$",O,dir(90)); dot("$X$",X,dir(X)); dot("$Y$",Y,dir(Y)); dot("$Z$",Z,dir(Z)); dot("$W$",W,dir(W)); dot("$A$",A,dir(A)); dot("$B$",B,dir(B)); dot("$C$",C,dir(C)); dot("$D$",D,dir(D)); dot("$A^*$",A0,dir(A0)); dot("$B^*$",B0,dir(B0)); dot("$C^*$",C0,dir(C0)); dot("$D^*$",D0,dir(D0)); [/asy][/asy] \begin{align*} OA\cdot OC+OB\cdot OD&=\sqrt{AB\cdot BC\cdot CD\cdot DA}\Longleftrightarrow\\ \frac{r^2}{OA^*}\cdot\frac{r^2}{OC^*}+\frac{r^2}{OB^*}\cdot \frac{r^2}{OD^*}&= \sqrt{\frac{r^2\cdot A^*B^*}{OA^*\cdot OB^*}\cdot \frac{r^2\cdot B^*C^*}{OB^*\cdot OC^*}\cdot \frac{r^2\cdot C^*D^*}{OC^*\cdot OD^*}\cdot \frac{r^2\cdot D^*A^*}{OD^*\cdot OA^*}}\Longleftrightarrow\\ OA^*\cdot OC^*+OB^*\cdot OD^*&=\sqrt{A^*B^*\cdot B^*C^*\cdot C^*D^*\cdot D^*A^*}\Longleftrightarrow\\ OA^*\cdot OC^*+OB^*\cdot OD^*&=\frac{XZ\cdot YW}{4}\Longleftrightarrow\\ OA^*\cdot OC^*+OB^*\cdot OD^*&=\frac{XY\cdot ZW+YZ\cdot WX}{4}\Longleftrightarrow\\ OA^*\cdot OC^*+OB^*\cdot OD^*&=XA^*\cdot C^*Z+B^*Y\cdot D^*W\Longleftrightarrow\\ r^2(\sin{\angle YXO}\cdot \sin{\angle WZO}+\sin{\angle ZYO}\cdot \sin{\angle XWO})&=r^2(\cos{\angle YXO}\cdot \cos{\angle WZO}+\cos{\angle ZYO}\cdot \cos{\angle XWO})\Longleftrightarrow\\ \cos{(\angle YXO+\angle WZO)}&=-\cos{(\angle ZYO+\angle XWO)}, \end{align*}which is true as $\angle YXO+\angle WZO=\frac{2\pi-\angle XOY-\angle ZOW}{2}=\frac{\angle YOZ+\angle WOX}{2}=\pi-\angle ZYO-\angle XWO$. $\blacksquare$
26.11.2021 16:06
rafaello wrote: Let $X,Y,Z,W$ be touch points of the incircle of $ABCD$ and sides $DA,AB,BC,CA$, respectively. Let $A^*,B^*,C^*,D^*$ denote the inverses of $A,B,C,D$ of an inversion around $(XYZW)$, respectively. Note that $A^*,B^*,C^*,D^*$ are the midpoints of $XY,YZ,ZW,WX$, respectively. [asy][asy] import olympiad;import geometry; size(8cm);defaultpen(fontsize(10pt)); pair A,B,C,D,X,Y,Z,W,O,A0,B0,C0,D0; X=dir(110);Y=dir(205);Z=dir(280);W=dir(10);O=(0,0); A=intersectionpoint(perpendicular(X, line(X,O) ),perpendicular(Y, line(Y,O) )); B=intersectionpoint(perpendicular(Y, line(Y,O) ),perpendicular(Z, line(Z,O) )); C=intersectionpoint(perpendicular(Z, line(Z,O) ),perpendicular(W, line(W,O) )); D=intersectionpoint(perpendicular(W, line(W,O) ),perpendicular(X, line(X,O) )); A0=midpoint(X--Y);B0=midpoint(Y--Z);C0=midpoint(Z--W);D0=midpoint(W--X); draw(circumcircle(X,Y,Z),royalblue);draw(A--B--C--D--cycle,heavyred+1);draw(A0--B0--C0--D0--cycle, fuchsia);draw(X--Y--Z--W--cycle, red+0.5); draw(A--O--B,palered+1);draw(C--O--D,palered+1); dot("$O$",O,dir(90)); dot("$X$",X,dir(X)); dot("$Y$",Y,dir(Y)); dot("$Z$",Z,dir(Z)); dot("$W$",W,dir(W)); dot("$A$",A,dir(A)); dot("$B$",B,dir(B)); dot("$C$",C,dir(C)); dot("$D$",D,dir(D)); dot("$A^*$",A0,dir(A0)); dot("$B^*$",B0,dir(B0)); dot("$C^*$",C0,dir(C0)); dot("$D^*$",D0,dir(D0)); [/asy][/asy] \begin{align*} OA\cdot OC+OB\cdot OD&=\sqrt{AB\cdot BC\cdot CD\cdot DA}\Longleftrightarrow\\ \frac{r^2}{OA^*}\cdot\frac{r^2}{OC^*}+\frac{r^2}{OB^*}\cdot \frac{r^2}{OD^*}&= \sqrt{\frac{r^2\cdot A^*B^*}{OA^*\cdot OB^*}\cdot \frac{r^2\cdot B^*C^*}{OB^*\cdot OC^*}\cdot \frac{r^2\cdot C^*D^*}{OC^*\cdot OD^*}\cdot \frac{r^2\cdot D^*A^*}{OD^*\cdot OA^*}}\Longleftrightarrow\\ OA^*\cdot OC^*+OB^*\cdot OD^*&=\sqrt{A^*B^*\cdot B^*C^*\cdot C^*D^*\cdot D^*A^*}\Longleftrightarrow\\ OA^*\cdot OC^*+OB^*\cdot OD^*&=\frac{XZ\cdot YW}{4}\Longleftrightarrow\\ OA^*\cdot OC^*+OB^*\cdot OD^*&=\frac{XY\cdot ZW+YZ\cdot WX}{4}\Longleftrightarrow\\ OA^*\cdot OC^*+OB^*\cdot OD^*&=XA^*\cdot C^*Z+B^*Y\cdot D^*W\Longleftrightarrow\\ r^2(\sin{\angle YXO}\cdot \sin{\angle WZO}+\sin{\angle ZYO}\cdot \sin{\angle XWO})&=r^2(\cos{\angle YXO}\cdot \cos{\angle WZO}+\cos{\angle ZYO}\cdot \cos{\angle XWO})\Longleftrightarrow\\ \cos{(\angle YXO+\angle WZO)}&=-\cos{(\angle ZYO+\angle XWO)}, \end{align*}which is true as $\angle YXO+\angle WZO=\frac{2\pi-\angle XOY-\angle ZOW}{2}=\frac{\angle YOZ+\angle WOX}{2}=\pi-\angle ZYO-\angle XWO$. $\blacksquare$ MOST BEAUTIFUL IDEE!(AND DIAGRAME!)