Let $\alpha$ be the positive root of the equation $x^2+x=5$. Let $n$ be a positive integer number, and let $c_0,c_1,\ldots,c_n\in \mathbb{N}$ be such that $ c_0+c_1\alpha+c_2\alpha^2+\cdots+c_n\alpha^n=2015. $ a. Prove that $c_0+c_1+c_2+\cdots+c_n\equiv 2 \pmod{3}$. b. Find the minimum value of the sum $c_0+c_1+c_2+\cdots+c_n$.
2015 Vietnam Team selection test
1st Day
sorry if this has been posted before . given a fixed circle $(O)$ and two fixed point $B,C$ on it.point A varies on circle $(O)$. let $I$ be the midpoint of $BC$ and $H$ be the orthocenter of $\triangle ABC$. ray $IH$ meet $(O)$ at $K$ ,$AH$ meet $BC$ at $D$ ,$KD$ meet $(O)$ at $M$ .a line pass $M$ and perpendicular to $BC$ meet $AI$ at $N$. a) prove that $N$ varies on a fixed circle. b) a circle pass $N$ and tangent to $AK$ at $A$ cut $AB,AC$ at $P,Q$. let $J$ be the midpoint of $PQ$ .prove that $AJ$ pass through a fixed point.
A positive interger number $k$ is called “$t-m$”-property if forall positive interger number $a$, there exists a positive integer number $n$ such that ${{1}^{k}}+{{2}^{k}}+{{3}^{k}}+...+{{n}^{k}} \equiv a (\bmod m).$ a) Find all positive integer numbers $k$ which has $t-20$-property. b) Find smallest positive integer number $k$ which has $t-{{20}^{15}}$-property.
2nd Day
There are $100$ students who praticipate at exam.Also there are $25$ members of jury.Each student is checked by one jury.Known that every student likes $10$ jury $a)$ Prove that we can select $7$ jury such that any student likes at least one jury. $b)$ Prove that we can make this every student will be checked by the jury that he likes and every jury will check at most $10$ students.
Let $ABC$ be a triangle with an interior point $P$ such that $\angle APB = \angle APC = \alpha$ and $\alpha > 180^o-\angle BAC$. The circumcircle of triangle $APB$ cuts $AC$ at $E$, the circumcircle of triangle $APC$ cuts $AB$ at $F$. Let $Q$ be the point in the triangle $AEF$ such that $\angle AQE = \angle AQF =\alpha$. Let $D$ be the symmetric point of $Q$ wrt $EF$. Angle bisector of $\angle EDF$ cuts $AP$ at $T$. a) Prove that $\angle DET = \angle ABC, \angle DFT = \angle ACB$. b) Straight line $PA$ cuts straight lines $DE, DF$ at $M, N$ respectively. Denote $I, J$ the incenters of the triangles $PEM, PFN$, and $K$ the circumcenter of the triangle $DIJ$. Straight line $DT$ cut $(K)$ at $H$. Prove that $HK$ passes through the incenter of the triangle $DMN$.
Find the smallest positive interger number $n$ such that there exists $n$ real numbers $a_1,a_2,\ldots,a_n$ satisfied three conditions as follow: a. $a_1+a_2+\cdots+a_n>0$; b. $a_1^3+a_2^3+\cdots+a_n^3<0$; c. $a_1^5+a_2^5+\cdots+a_n^5>0$.