Problem

Source: Vietnam TST 2015 (VNTST) P5

Tags: geometry, incircle, circumcircle, angles



Let $ABC$ be a triangle with an interior point $P$ such that $\angle APB = \angle APC = \alpha$ and $\alpha > 180^o-\angle BAC$. The circumcircle of triangle $APB$ cuts $AC$ at $E$, the circumcircle of triangle $APC$ cuts $AB$ at $F$. Let $Q$ be the point in the triangle $AEF$ such that $\angle AQE = \angle AQF =\alpha$. Let $D$ be the symmetric point of $Q$ wrt $EF$. Angle bisector of $\angle EDF$ cuts $AP$ at $T$. a) Prove that $\angle DET = \angle ABC, \angle DFT = \angle ACB$. b) Straight line $PA$ cuts straight lines $DE, DF$ at $M, N$ respectively. Denote $I, J$ the incenters of the triangles $PEM, PFN$, and $K$ the circumcenter of the triangle $DIJ$. Straight line $DT$ cut $(K)$ at $H$. Prove that $HK$ passes through the incenter of the triangle $DMN$.


Attachments: