2010 IberoAmerican

Day 1

1

There are ten coins a line, which are indistinguishable. It is known that two of them are false and have consecutive positions on the line. For each set of positions, you may ask how many false coins it contains. Is it possible to identify the false coins by making only two of those questions, without knowing the answer to the first question before making the second?

2

Determine if there are positive integers $a, b$ such that all terms of the sequence defined by \[ x_{1}= 2010,x_{2}= 2011\\ x_{n+2}= x_{n}+ x_{n+1}+a\sqrt{x_{n}x_{n+1}+b}\quad (n\ge 1) \] are integers.

3

The circle $ \Gamma $ is inscribed to the scalene triangle $ABC$. $ \Gamma $ is tangent to the sides $BC, CA$ and $AB$ at $D, E$ and $F$ respectively. The line $EF$ intersects the line $BC$ at $G$. The circle of diameter $GD$ intersects $ \Gamma $ in $R$ ($ R\neq D $). Let $P$, $Q$ ($ P\neq R , Q\neq R $) be the intersections of $ \Gamma $ with $BR$ and $CR$, respectively. The lines $BQ$ and $CP$ intersects at $X$. The circumcircle of $CDE$ meets $QR$ at $M$, and the circumcircle of $BDF$ meet $PR$ at $N$. Prove that $PM$, $QN$ and $RX$ are concurrent. Author: Arnoldo Aguilar, El Salvador

Day 2

1

The arithmetic, geometric and harmonic mean of two distinct positive integers are different numbers. Find the smallest possible value for the arithmetic mean.

2

Let $ABCD$ be a cyclic quadrilateral whose diagonals $AC$ and $BD$ are perpendicular. Let $O$ be the circumcenter of $ABCD$, $K$ the intersection of the diagonals, $ L\neq O $ the intersection of the circles circumscribed to $OAC$ and $OBD$, and $G$ the intersection of the diagonals of the quadrilateral whose vertices are the midpoints of the sides of $ABCD$. Prove that $O, K, L$ and $G$ are collinear

3

Around a circular table sit $12$ people, and on the table there are $28$ vases. Two people can see each other, if and only if there is no vase lined with them. Prove that there are at least two people who can be seen.