Problem

Source:

Tags: geometry, circumcircle, incenter, projective geometry, geometry proposed



The circle $ \Gamma $ is inscribed to the scalene triangle $ABC$. $ \Gamma $ is tangent to the sides $BC, CA$ and $AB$ at $D, E$ and $F$ respectively. The line $EF$ intersects the line $BC$ at $G$. The circle of diameter $GD$ intersects $ \Gamma $ in $R$ ($ R\neq D $). Let $P$, $Q$ ($ P\neq R , Q\neq R $) be the intersections of $ \Gamma $ with $BR$ and $CR$, respectively. The lines $BQ$ and $CP$ intersects at $X$. The circumcircle of $CDE$ meets $QR$ at $M$, and the circumcircle of $BDF$ meet $PR$ at $N$. Prove that $PM$, $QN$ and $RX$ are concurrent. Author: Arnoldo Aguilar, El Salvador