Given an integer $ m$, define the sequence $ \left\{a_{n}\right\}$ as follows: \[ a_{1}=\frac{m}{2},\ a_{n+1}=a_{n}\left\lceil a_{n}\right\rceil,\textnormal{ if }n\geq 1\] Find all values of $ m$ for which $ a_{2007}$ is the first integer appearing in the sequence. Note: For a real number $ x$, $ \left\lceil x\right\rceil$ is defined as the smallest integer greater or equal to $ x$. For example, $ \left\lceil\pi\right\rceil=4$, $ \left\lceil 2007\right\rceil=2007$.
2007 IberoAmerican
September 11th - Day 1
Let $ ABC$ be a triangle with incenter $ I$ and let $ \Gamma$ be a circle centered at $ I$, whose radius is greater than the inradius and does not pass through any vertex. Let $ X_{1}$ be the intersection point of $ \Gamma$ and line $ AB$, closer to $ B$; $ X_{2}$, $ X_{3}$ the points of intersection of $ \Gamma$ and line $ BC$, with $ X_{2}$ closer to $ B$; and let $ X_{4}$ be the point of intersection of $ \Gamma$ with line $ CA$ closer to $ C$. Let $ K$ be the intersection point of lines $ X_{1}X_{2}$ and $ X_{3}X_{4}$. Prove that $ AK$ bisects segment $ X_{2}X_{3}$.
Two teams, $ A$ and $ B$, fight for a territory limited by a circumference. $ A$ has $ n$ blue flags and $ B$ has $ n$ white flags ($ n\geq 2$, fixed). They play alternatively and $ A$ begins the game. Each team, in its turn, places one of his flags in a point of the circumference that has not been used in a previous play. Each flag, once placed, cannot be moved. Once all $ 2n$ flags have been placed, territory is divided between the two teams. A point of the territory belongs to $ A$ if the closest flag to it is blue, and it belongs to $ B$ if the closest flag to it is white. If the closest blue flag to a point is at the same distance than the closest white flag to that point, the point is neutral (not from $ A$ nor from $ B$). A team wins the game is their points cover a greater area that that covered by the points of the other team. There is a draw if both cover equal areas. Prove that, for every $ n$, team $ B$ has a winning strategy.
September 12th - Day 2
In a $ 19\times 19$ board, a piece called dragon moves as follows: It travels by four squares (either horizontally or vertically) and then it moves one square more in a direction perpendicular to its previous direction. It is known that, moving so, a dragon can reach every square of the board. The draconian distance between two squares is defined as the least number of moves a dragon needs to move from one square to the other. Let $ C$ be a corner square, and $ V$ the square neighbor of $ C$ that has only a point in common with $ C$. Show that there exists a square $ X$ of the board, such that the draconian distance between $ C$ and $ X$ is greater than the draconian distance between $ C$ and $ V$.
Let's say a positive integer $ n$ is atresvido if the set of its divisors (including 1 and $ n$) can be split in in 3 subsets such that the sum of the elements of each is the same. Determine the least number of divisors an atresvido number can have.
Let $ \mathcal{F}$ be a family of hexagons $ H$ satisfying the following properties: i) $ H$ has parallel opposite sides. ii) Any 3 vertices of $ H$ can be covered with a strip of width 1. Determine the least $ \ell\in\mathbb{R}$ such that every hexagon belonging to $ \mathcal{F}$ can be covered with a strip of width $ \ell$. Note: A strip is the area bounded by two parallel lines separated by a distance $ \ell$. The lines belong to the strip, too.