Problem

Source:

Tags: geometry, incenter, inradius, trigonometry, circumcircle, trig identities, Law of Sines



Let $ ABC$ be a triangle with incenter $ I$ and let $ \Gamma$ be a circle centered at $ I$, whose radius is greater than the inradius and does not pass through any vertex. Let $ X_{1}$ be the intersection point of $ \Gamma$ and line $ AB$, closer to $ B$; $ X_{2}$, $ X_{3}$ the points of intersection of $ \Gamma$ and line $ BC$, with $ X_{2}$ closer to $ B$; and let $ X_{4}$ be the point of intersection of $ \Gamma$ with line $ CA$ closer to $ C$. Let $ K$ be the intersection point of lines $ X_{1}X_{2}$ and $ X_{3}X_{4}$. Prove that $ AK$ bisects segment $ X_{2}X_{3}$.