Problem

Source:

Tags: geometry, algorithm, induction, combinatorics proposed, combinatorics



Two teams, $ A$ and $ B$, fight for a territory limited by a circumference. $ A$ has $ n$ blue flags and $ B$ has $ n$ white flags ($ n\geq 2$, fixed). They play alternatively and $ A$ begins the game. Each team, in its turn, places one of his flags in a point of the circumference that has not been used in a previous play. Each flag, once placed, cannot be moved. Once all $ 2n$ flags have been placed, territory is divided between the two teams. A point of the territory belongs to $ A$ if the closest flag to it is blue, and it belongs to $ B$ if the closest flag to it is white. If the closest blue flag to a point is at the same distance than the closest white flag to that point, the point is neutral (not from $ A$ nor from $ B$). A team wins the game is their points cover a greater area that that covered by the points of the other team. There is a draw if both cover equal areas. Prove that, for every $ n$, team $ B$ has a winning strategy.