2024 India National Olympiad

1

In triangle $ABC$ with $CA=CB$, point $E$ lies on the circumcircle of $ABC$ such that $\angle ECB=90^{\circ}$. The line through $E$ parallel to $CB$ intersects $CA$ in $F$ and $AB$ in $G$. Prove that the center of the circumcircle of triangle $EGB$ lies on the circumcircle of triangle $ECF$. Proposed by Prithwijit De

2

All the squares of a $2024 \times 2024$ board are coloured white. In one move, Mohit can select one row or column whose every square is white, choose exactly $1000$ squares in that row or column, and colour all of them red. Find maximum number of squares Mohit can colour in a finite number of moves. $\quad$ Proposed by Pranjal Srivastava

3

Let $p$ be an odd prime and $a,b,c$ be integers so that the integers $$a^{2023}+b^{2023},\quad b^{2024}+c^{2024},\quad a^{2025}+c^{2025}$$are divisible by $p$. Prove that $p$ divides each of $a,b,c$. $\quad$ Proposed by Navilarekallu Tejaswi

4

A finite set $\mathcal{S}$ of positive integers is called cardinal if $\mathcal{S}$ contains the integer $|\mathcal{S}|$ where $|\mathcal{S}|$ denotes the number of distinct elements in $\mathcal{S}$. Let $f$ be a function from the set of positive integers to itself such that for any cardinal set $\mathcal{S}$, the set $f(\mathcal{S})$ is also cardinal. Here $f(\mathcal{S})$ denotes the set of all integers that can be expressed as $f(a)$ where $a \in \mathcal{S}$. Find all possible values of $f(2024)$ $\quad$ Proposed by Sutanay Bhattacharya

5

Let points $A_1$, $A_2$ and $A_3$ lie on the circle $\Gamma$ in a counter-clockwise order, and let $P$ be a point in the same plane. For $i \in \{1,2,3\}$, let $\tau_i$ denote the counter-clockwise rotation of the plane centred at $A_i$, where the angle of rotation is equial to the angle at vertex $A_i$ in $\triangle A_1A_2A_3$. Further, define $P_i$ to be the point $\tau_{i+2}(\tau_{i}(\tau_{i+1}(P)))$, where the indices are taken modulo $3$ (i.e., $\tau_4 = \tau_1$ and $\tau_5 = \tau_2$). Prove that the radius of the circumcircle of $\triangle P_1P_2P_3$ is at most the radius of $\Gamma$. Proposed by Anant Mudgal

6

For each positive integer $n \ge 3$, define $A_n$ and $B_n$ as \[A_n = \sqrt{n^2 + 1} + \sqrt{n^2 + 3} + \cdots + \sqrt{n^2+2n-1}\]\[B_n = \sqrt{n^2 + 2} + \sqrt{n^2 + 4} + \cdots + \sqrt{n^2 + 2n}.\]Determine all positive integers $n\ge 3$ for which $\lfloor A_n \rfloor = \lfloor B_n \rfloor$. Note. For any real number $x$, $\lfloor x\rfloor$ denotes the largest integer $N\le x$. Anant Mudgal and Navilarekallu Tejaswi