Problem

Source: INMO 2024/5

Tags: rotation, geometry, geometric transformation, abstract algebra, circumcircle



Let points $A_1$, $A_2$ and $A_3$ lie on the circle $\Gamma$ in a counter-clockwise order, and let $P$ be a point in the same plane. For $i \in \{1,2,3\}$, let $\tau_i$ denote the counter-clockwise rotation of the plane centred at $A_i$, where the angle of rotation is equial to the angle at vertex $A_i$ in $\triangle A_1A_2A_3$. Further, define $P_i$ to be the point $\tau_{i+2}(\tau_{i}(\tau_{i+1}(P)))$, where the indices are taken modulo $3$ (i.e., $\tau_4 = \tau_1$ and $\tau_5 = \tau_2$). Prove that the radius of the circumcircle of $\triangle P_1P_2P_3$ is at most the radius of $\Gamma$. Proposed by Anant Mudgal