Let $p$ be an odd prime and $a,b,c$ be integers so that the integers $$a^{2023}+b^{2023},\quad b^{2024}+c^{2024},\quad a^{2025}+c^{2025}$$are divisible by $p$. Prove that $p$ divides each of $a,b,c$. $\quad$ Proposed by Navilarekallu Tejaswi
Problem
Source: INMO 2024/3
Tags: number theory, modular arithmetic, Divisibility
21.01.2024 15:11
If $p$ divides one of them, it divides all of them. Assume that it divides none of them. Then, there exists an inverse for all of them in modulo $p$ and then it's some algmanip to get $b \equiv c \pmod{p}$ a contradiction
21.01.2024 15:23
mannshah1211 wrote: If $p$ divides one of them, it divides all of them. Assume that it divides none of them. Then, there exists an inverse for all of them in modulo $p$ and then it's some algmanip to get $b \equiv c \pmod{p}$ a contradiction Did it the same for the first part but used sum of cubes to arrive at the result (more lengthy)
21.01.2024 15:24
isn't that this question toooo easy for INMO p3
21.01.2024 15:42
LuciferMichelson wrote: isn't that this question toooo easy for INMO p3 On what sample set are you basing your opinion on difficulty?
21.01.2024 15:46
Proposed by Navilarekallu Tejaswi
21.01.2024 15:57
If $p$ divides one of them, it divides all of them. Assume that it divides none of them. Then just do some things to get $b \equiv c \pmod{p}$. Which gives a contradiction
21.01.2024 15:57
math_comb01 wrote: Let $p$ be an odd prime and $a,b,c$ be integers so that the integers $$a^{2023}+b^{2023},\quad b^{2024}+c^{2024},\quad a^{2025}+c^{2025}$$. Prove that $p$ divides each of $a,b,c$. Clearly if $p$ divides any of $a,b,c$ we are done, so from now onwards we assume none of them are divisible by $p$.Define $x,y$ such that $x = \dfrac{a}{b} \mod p \Longleftrightarrow x^{2023}\equiv -1\mod p$ and $y = \dfrac{b}{c}\mod p \Longleftrightarrow y^{2024}\equiv -1\mod p$.Then notice \[\dfrac{1}{xy} = \dfrac{c}{a}\mod p\Longleftrightarrow (x\cdot y)^{2025}\equiv -1\mod p\]Claim : $y\equiv 1\mod p$ that is $b\equiv c \mod p$ Based on previous equations $$-1 = (x\cdot y)^{2023\cdot 2025} = x^{2023\cdot 2025}\cdot y^{2023\cdot 2025} = -y^{2024^2-1}=-y^{-1}\mod p\Longleftrightarrow y\equiv 1\mod p $$ Now plugging back in the original equation we get $1=y^{2024}=-1\mod p\implies p\mid 2$ a contradiction to the fact that $p$ was an odd-prime.$\blacksquare$
21.01.2024 16:54
Yeah basically belows solution I got.
21.01.2024 17:07
Firstly note that if even one of them is divisible by $p$, all of them are. So assume on the contrary that none of them are divisible by $p$. So assume none of them are. Then we get that, \begin{align*} \left(\dfrac{a}{b}\right)^{2023} &\equiv -1 \pmod{p}\\ \left(\dfrac{b}{c}\right)^{2024} &\equiv -1 \pmod{p}\\ \left(\dfrac{c}{a}\right)^{2025} &\equiv -1 \pmod{p} .\end{align*} We multiply all three of them to get $a^2 \equiv -bc \pmod{p}$. Now note that we have $a^{2023} \equiv -b^{2023} \pmod{p}$ and $a^{2025} \equiv -c^{2025} \pmod{p}$. Multiplying these, we get, \[ a^{2023 + 2025} \equiv b^{2023}c^{2025} \implies (a^2)^{2024} \equiv c^2 \cdot (bc)^{2023} \implies bc \cdot (bc)^{2023} \equiv c^2 \cdot (bc)^{2023} \implies b \equiv c \pmod{p}. \] But then, \[ p\mid b^{2024} + c^{2024} \equiv 2b^{2024} \implies p \mid 2 \]which is a contradiction and we are done.
21.01.2024 17:42
Solved with Anchovy. I assume the problem means that $p$ divides all of $$a^{2023}+b^{2023},\quad b^{2024}+c^{2024},\quad a^{2025}+c^{2025}$$ If $p$ divides one of $a,b,c$, clearly $p$ divides all of $a,b,c$, so assume $p$ divides none of them. Let $x = \frac ab, y = \frac bc, z = \frac ca$. The condition $x^{2023} \equiv -1\pmod p, y^{2024} \equiv 1\pmod p, z^{2025} \equiv -1\pmod p$ and we also have $xyz = 1$, so multiplying the three equations gives $(xyz)^{2023} \cdot y z^2 \equiv 1\pmod p$, so $yz^2 \equiv 1\pmod p$. This implies that $y\equiv -\frac{1}{z^2}$, so $(-1/z^2)^{2024} \equiv 1$, so $z^{4048} \equiv 1$. But $(z^{2025})^2 = z^{4050}\equiv 1$, so dividing the two gives $z^2 \equiv 1$, so $z\in \{-1,1\}$ mod p. Since $z^{2025} \equiv -1$, we have $z\equiv -1$. But then since $yz^2 \equiv 1$, $y\equiv 1\pmod p$, so $b\equiv c \pmod p$. Now, this means that $2b^{2024}$ is a multiple of $p$, contradiction since $p$ doesn't divide $b$ and $p > 2$.
21.01.2024 18:03
Nah bro, I ain't even gonna comment on this one. Solution: Observe that $p$ divides either of $a,b,c$, then it divides everything and we're done. Henceforth, assume that $p \nmid a,b,c$. We will now work modulo $p$ with special powers of existence of inverses of $a,b,c$. From $p \mid a^{2023}+b^{2023}$, we get that $b^{2024} \equiv -a^{2023}b \pmod{p}$. Swing this into $p \mid b^{2024}+c^{2024}$ to get $c^{2025} \equiv a^{2023}bc \pmod{p}$. At last, putting this into $p \mid a^{2025} + c^{2025}$, we get \[a^{2025} + a^{2023}bc \equiv 0 \iff a^2 + bc \equiv 0 \pmod{p}.\]From here, we wish to eliminate $b$ completely modulo $p$. This can be achieved via substituting $b \equiv -a^2/c$. Putting this in $p \mid a^{2023}+b^{2023}$ we get \[a^{2023} - \frac{a^{4046}}{c^{2023}} \equiv 0 \iff a^{2023} \equiv c^{2023} \pmod{p}.\]This yields \[a^{2025} \equiv a^2c^{2023} \equiv -c^{2025} \pmod{p} \implies a^2 + c^2 \equiv 0 \pmod{p}.\]Finally, on combining this with $a^2 \equiv -bc$, we get \[p \mid c(c-b) \iff c \equiv b \pmod{p}\]since $\gcd(c,p) = \gcd(b,p) = 1$. Upon putting $c \equiv b$ in say $p \mid b^{2024}+c^{2024}$, we get immediately get $2b \equiv 0 \pmod{p}$ which is a contradiction since $p$ is odd and we're done. $\blacksquare$
21.01.2024 18:30
............
21.01.2024 18:33
Samujjal101 wrote: Just see that if gcd(a,b)=1 then the given conditions are not possible. So, a|b which means b=ak for all integers k. Now p divides (a^2023 + k^2023.a^2023) so p either divides a^2023 or (1+ k^2023) => p divides a^2023 =>p divides a ..............
21.01.2024 18:59
If $p$ divides any one of them, it divides the other two as well. Assume for the sake of contradiction that $p$ doesn't divide any of the three. Since $p$ is an odd prime, it has a primitive root, say $g$. Let $a=g^x,b=g^y,c=g^z$. Claim. $g^m+g^n=0(p)\implies m-n=k(2k)$ where $p=2k+1$. Proof. $g^{m-n}=-1(p)\implies m-n=k(2k)\implies m-n=2kq+k=k(2q+1)$. Using the claim and given information, $$0=(x-y)+(y-z)+(z-x)=\frac{k(2q_1+1)}{2023}+\frac{k(2q_2+1)}{2024}+\frac{k(2q_3+1)}{2025}$$Cancelling $k$ and the denominator and taking mod 2 leads to a contradiction. Done!
21.01.2024 23:32
math_comb01 wrote: Let $p$ be an odd prime and $a,b,c$ be integers so that the integers $$a^{2023}+b^{2023},\quad b^{2024}+c^{2024},\quad a^{2025}+c^{2025}$$. This sentence seems to be missing something. Are all three integers divisible by $p$?
22.01.2024 08:31
djmathman wrote: math_comb01 wrote: Let $p$ be an odd prime and $a,b,c$ be integers so that the integers $$a^{2023}+b^{2023},\quad b^{2024}+c^{2024},\quad a^{2025}+c^{2025}$$. This sentence seems to be missing something. Are all three integers divisible by $p$? Yes. It's supposed to say that all three are divisible by $p$, but I suppose a lot of us got tunnel vision and didn't see the error because we already saw it in the test lol
22.01.2024 10:14
First see that if $p|a$ or $p|b$ or $p|c$ then $p$ divides all of them. Now suppose that $p{\not|}a$ $p{\not|}b$ $p{\not|}c$. Then the desired contradiction will come from the fact that $p$ is odd prime, i.e we would prove $p=2$. Since $p{\not|}a$ $p{\not|}b$ $p{\not|}c$ we could take inverses. Reducing everything $(\textrm{mod}\ p)$ we get $$(ab^{-1})^{2023}\equiv-1 ({mod}\,p) \cdots(1)$$$$(bc^{-1})^{2024}\equiv-1 ({mod}\,p)\cdots(2) $$$$(ca^{-1})^{2025}\equiv-1 ({mod}\,p)\cdots(3) $$Multiplying equations $1$, $2$ and $3$ we get $$a^{-2}bc\equiv-1 ({mod}\,p)\cdots(4)$$. $$\Rightarrow (ab^{-1})^{-1}ca^{-1}\equiv-1 ({mod}\,p) \cdots(5)$$i.e $$\Rightarrow ca^{-1}\equiv-(ab^{-1}) ({mod}\,p) \cdots(6)$$Now from $3$ we get $$(ab^{-1})^{2025}\equiv1 ({mod}\,p) \cdots(7)$$and from 1 we get $$(ab^{-1})^{4046}\equiv1 ({mod}\,p) \cdots(8)$$Let the order of $ab^{-1}$ mod $p$ be k. Thus $k|gcd(4046,2025)$ i.e $k|1$. Therefore we have $$ab^{-1}\equiv1 ({mod}\,p)$$or $$a\equiv b ({mod}\,p)$$Putting this information in equation $1$ we get $$1\equiv -1 ({mod}\,p)$$or $p=2$ which is a contradiction. $\blacksquare$
22.01.2024 10:25
Well, I'll post my solution just for the sake of it, I guess. If $p$ divides one of $a, b, c,$ then it divides all of them, so henceforth assume it doesn't divide any of them. Thus, there exists a valid inverse in modulo $p$ for each of $a, b, c.$ Then, we have $\left(\frac{a}{b}\right)^{2023} \equiv -1 \pmod{p}, \left(\frac{b}{c}\right)^{2024} \equiv -1\pmod{p}, \left(\frac{c}{a}\right)^{2025}\equiv -1\pmod{p},$ and thus, multiplying all of them together, we have $bc \equiv -a^2 \pmod{p}.$ Thus, $b^{1012}c^{1012} \equiv a^{2024} \pmod{p},$ which gives $ab^{1012}c^{1012} + c^{2025} \equiv 0 \pmod{p} \implies ab^{1012} \equiv -c^{1013} \pmod{p}.$ Thus, $a \equiv \frac{-c^{1013}}{b^{1012}} \pmod{p},$ which by putting in the first equation gives $\frac{b^{1013 \cdot 2023} - c^{1013 \cdot 2023}}{b^{1012 \cdot 2023}} \equiv 0 \pmod{p} \implies b^{1013 \cdot 2023} - c^{1013 \cdot 2023} \equiv 0 \pmod{p}.$ From the second equation, we get $b^{4048} - c^{4048} \equiv 0 \pmod{p},$ so $p \mid b^{\gcd(4048, 1013 \cdot 2023)} - c^{\gcd(4048, 1013 \cdot 2023)} = b - c,$ so $p \mid 2b^{2024},$ a contradiction.
22.01.2024 16:24
My attempt,
23.01.2024 11:58
we work with $a^{r}+b^{r} \equiv 0 \pmod p , b^{r+1}+c^{r+1} \equiv 0 \pmod p , a^{r+2}+c^{r+2} \equiv 0 \pmod p$ for any $r \in \mathbb{Z}^{+}$ and it follows for $r=2023$. $\mathsf{Claim 1:-}$ If $p$ divides any one of $a,b,c$ then $p|a,b,c$. $\mathsf{Proof:-}$ W.L.O.G $p|a \implies p|a^{r}$ , now since $a^{r}+b^{r} \equiv 0 \pmod p \implies p|b^{r} \implies p|b$ and also $b^{r+1}+c^{r+1} \equiv 0 \pmod p \implies p|c^{r+1} \implies p|c$. $\square$ From $\mathsf{Claim 1}$ it suffices to disprove the fact that that $p \nmid a, p \nmid b , p\nmid c$ ,so FTSOC we assume that is the case. $\mathsf{Claim 2:-}$ $p$ does not divide any of $a-b , b-c,c-a$. $\mathsf{Proof:-}$ FTSOC $p|a-b$ , then $a \equiv b \pmod p \implies a^{r} \equiv b^{r} \pmod p \implies 2a^{r} \equiv 0 \pmod p$, now since $\gcd(p,2)=\gcd(p,a)=1$ , it gives a contradiction. $\rightarrow \leftarrow$. Now , $\bullet a^{r}+b^{r} \equiv 0 \pmod p$ $\bullet b^{r+1}+c^{r+1} \equiv 0 \pmod p$ $\bullet a^{r+2}+c^{r+2} \equiv 0 \pmod p$ so $a^{r} \equiv -b^{r} \pmod p$ and $a^{r+2} \equiv -c^{r+2} \pmod p \implies a^2c^{r+1} \equiv -bc^{r+2} \pmod p$ and since $\gcd(c,p)=1 \implies a^2 \equiv -bc \pmod p , b^2 \equiv -ca \pmod p , c^2 \equiv -ab \pmod p \qquad (\star)$ now substract the subsequent cogruences to get $a^2-b^2 \equiv c(a-b) \pmod p$ similarly symmetrically other in $b$ and $c$ , but from $\mathsf{Claim 2}$ we have $p \nmid a-b , b-c , c-a$ , which implies $a+b \equiv c \pmod p , b+c \equiv a \pmod p , c+a \equiv b \pmod p \qquad (\dagger)$ Now from $(\star)$ we have $(a+b)^2+(b+c)^2+(c+a)^2 \equiv 0 \pmod p$ and from $(\dagger)$ we get this is equivalent to $a^2+b^2+c^2 \equiv 0 \pmod p \implies ab+bc+ca \equiv 0 \pmod p \implies a+b+c \equiv 0 \pmod p \implies 2a,2b , 2c \equiv 0 \pmod p$ , but this is not possible as $\gcd(2,p)=\gcd(a,p)=\gcd(b,p)=\gcd(c,p)=1$. Hence we get a contradiction $\rightarrow \leftarrow$. Hence $p$ must divide $a,b,c$. $\blacksquare$ A cute NT for sure!
24.01.2024 15:01
Isn’t this a one-liner: For $a^x \equiv -b^x$, raise both sides to power $yz$ to get terms $a^{xyz}, b^{xyz}, c^{xyz} (mod p)$ and done
24.01.2024 15:28
Master_of_Aops wrote: ... to get terms $a^{xyz}, b^{xyz}, c^{xyz} (mod p)$ and done How exactly are you done from here?
01.02.2024 20:49
You get $a^{xyz} \equiv b^{xyz}, b^{xyz} \equiv -c^{xyz}, a^{xyz} \equiv c^{xyz}(mod p)$ so all are divisible by $p$
03.02.2024 07:23
if p doesnt divide any of them $(\frac{a}{b})^{2023} \equiv -1(mod p)$ $(\frac{b}{c})^{2024} \equiv -1(mod p)$ $(\frac{a}{c})^{2025} \equiv -1(mod p)$ $x^{2023} \equiv -1(mod p)$ $y^{2024} \equiv -1(mod p)$ $x^{2025}y^{2025} \equiv -1(mod p)$ so $x^2y \equiv -1(mod p)$ so $y \equiv \frac{-1}{x^2} (mod p)$ so $x^{2025} \equiv 1 (mod p)$ also $x^{2*2023} \equiv 1(mod p)$ let $k$ be the order of $x$ mod p so $k | gcd(2025,2*2023) \implies k|1$ $x \equiv 1(mod p)$ then $1 \equiv -1(mod p)$ not possible as p is odd. so p divides one of them then the answer is easy to conclude
17.02.2024 16:37
We first prove that if $p$ divides any one of $a,b,c$, then it divides all the three numbers. Suppose $p\mid a$. Then, $p\mid a^{2023}$ but $p\mid a^{2023}+b^{2023}$, which means that $p\mid b^{2023}$, forcing $p\mid b$. Also, $p\mid c^{2025}+a^{2025}$ and $p\mid a^{2025},$ which means $p\mid c^{2025}$, forcing $p\mid c$. Similarly, if $p\mid b$, then $p\mid b^{2023}$ and $p\mid a^{2023}+b^{2023}$, which means $p\mid a^{2023}$, forcing $p\mid a$. Since $p\mid a$, we also have that $p\mid c$ from the earlier proof. Finally, if $p\mid c$, then $p\mid c^{2024}$ and $p\mid b^{2024}+c^{2024}$, which means $p\mid b^{2024}$, forcing $p\mid b$, which in turn forces $p\mid c$. So, if $p$ divides any one of $a,b,c$, then it divides all the three numbers. Assume that $p\nmid a,b,c$. For integer $a$ and prime $p$, we define the order of $a\pmod{p}$ to be the smallest positive integer $k$ such that $a^k\equiv1\pmod{p}$. We prove a Lemma. $\textbf{Lemma.}$ If $k$ is order of $a$, $\pmod{p}$ and $a^n\equiv1\pmod{p}$, then $k\mid n$. $\emph{Proof.}$ Suppose it was possible that $k\nmid n$. Note that if $n<k$, then it will contradict the minimality of $k$. So, $n>k$. Hence, there exists $q>0$ and $0<r<k$ such that $n=kq+r$. Now, $a^{k}\equiv1\pmod{p}$, which means $a^{kq}\equiv1\pmod{p}$, so $a^n\equiv a^{kq+r}\equiv a^r\equiv1\pmod{p}$. But since $0<r<k$ and $a^r\equiv1\pmod{p}$, the minimality of $k$ gives us a contradiction. Hence, $k\nmid n$ is impossible, and $r=0$ is forced. The proof is complete. $\blacksquare$ We have the equations \[\left(\frac{a}{b}\right)^{4046}\equiv1\pmod{p} \ \ \ \ (1)\]\[\left(\frac{b}{c}\right)^{4048}\equiv1\pmod{p} \ \ \ \ (2)\]\[\left(\frac{c}{a}\right)^{4050}\equiv1\pmod{p} \ \ \ \ (3)\]Multiplying these equations $(1),(2),(3),$ we obtain $a^4\equiv b^2c^2\pmod{p}$. So, $a^2\equiv\pm bc\pmod{p}$. Note, the equation $(1)$ is $\left(\frac{a}{b}\right)^{4046}\equiv1\pmod{p}$. So, \[\left(\frac{\left(bc\right)^{2023}}{b^{4046}}\right)\equiv\pm1\pmod{p},\]which gives \[\left(\frac{b}{c}\right)^{4046}\equiv1\pmod{p} \ \ \ \ (4)\]It follows that if $k$ is the order of $\left(\frac{b}{c}\right)$, $\pmod{p}$, then from equation $(1)$, we get $k\mid4048$, and from equation $(4)$, we get $k\mid4046$, using the $\textbf{Lemma}$ in each case. This forces $k\mid2$, so $k=1,2$. Hence, we have that $\left(\frac{b}{c}\right)^{2}\equiv1\pmod{p}$. So, $b^2\equiv c^2\pmod{p}$. Taking to the power $1012$, we get $b^{2024}\equiv c^{2024}\pmod{p}$, and since $p\mid b^{2024}+c^{2024}$, we have $p\mid2b^{2024}$, which forces $p\mid b$, as $p$ is an odd prime. However, if $p\mid b$ then $p\mid a$, and $p\mid c$ are forced by our initial arguments. The proof is complete. $\blacksquare$
19.02.2024 08:41
In contest solution: Observe that if $p$ divides any one of $a, b, c$, then it divides all of them. Assume this to not be the case. Then we get the system of congruences $$a^{2023} \equiv -b^{2023} \pmod{p} \cdots(A)$$$$b^{2024} \equiv -c^{2024} \pmod{p} \cdots(B)$$$$c^{2025} \equiv -a^{2025} \pmod{p} \cdots(C)$$Multiplying $(A)$ and $(B)$, $$b \equiv c\left(\frac{c}{a}\right)^{2023} \pmod{p}$$$$\implies b^{2025} \equiv c^{2025}\left(\frac{c}{a}\right)^{2023 \cdot 2025} \pmod{p}$$but from $(C)$, $$\left(\frac{c}{a}\right)^{2025} \equiv -1 \pmod{p}$$Substituting in, $$b^{2025} \equiv c^{2025}(-1)^{2023} \equiv -c^{2025} \pmod{p}$$Dividing $(B)$ from this new equation, $$b \equiv c \pmod{p}$$Therefore $$b^{2024} \equiv -b^{2024} \pmod{p}$$$$\implies 2b^{2024} \equiv 0 \pmod{p}$$$$\implies b^{2024} \equiv 0 \pmod{p}$$$$\implies p \mid b, $$a contradiction. $\square$
28.02.2024 03:36
We are given, \begin{align*} a^{2023} + b^{2023} \equiv b^{2024} + c^{2024} \equiv c^{2025} + a^{2025} \equiv 0 \pmod{p} \end{align*}Now assume that $a, b, c \not\equiv 0 \pmod{p}$ as if one of the three is $0$ modulo $p$, all of them must be. Then we find that, \begin{align*} a^{2023}b \equiv c^{2024} \pmod{p} \end{align*}However then from this we may conclude that, \begin{align*} a^{2023}bc \equiv -a^{2025} \pmod{p} \end{align*}Dividing as $a \not\equiv 0$ modulo $p$, we find that, \begin{align*} -bc \equiv a^2 \pmod{p} \end{align*}Now rewriting our conditions we have, \begin{align*} b^{1012} &\equiv c^{1011}a \pmod{p}\\ b^{2024} &\equiv -c^{2024} \pmod{p}\\ c^{1013} &\equiv -b^{1012}a \pmod{p} \end{align*}Squaring the first equation we have, \begin{align*} b^{2024} &\equiv c^{2022}a^2 \pmod{p}\\ -c^{2024} &\equiv c^{2022}a^2 \pmod{p}\\ -c^2 &\equiv a^2 \pmod{p}\\ -c^2 &\equiv -bc \pmod{p}\\ b &\equiv c \pmod{p} \end{align*}From the first equation we then find $a \equiv b \bmod p$. Thus we have, \begin{align*} a \equiv b \equiv c \pmod{p} \end{align*}Thus we have from the original equations, \begin{align*} 2a^{2023} \equiv 2a^{2024} \equiv 2a^{2025} \equiv 0 \pmod{p} \end{align*}from which we easily see $a \equiv 0 \bmod{p}$ and hence are done.
14.03.2024 12:09
The solution I originally did in the contest: First, FTSOC, we assume that $p \nmid a$, $p \nmid b$, $p \nmid c$. $$p \mid a^{2023}+b^{2023}...(i)$$$$p \mid b^{2024}+c^{2024}...(ii)$$$$p \mid a^{2025}+c^{2025}...(iii)$$From $(i)$, we get that: $p \mid a^{2025}+a^2b^{2023}$ Combining this with $(iii)$, $p \mid a^2b^{2023}-c^{2025}$ As $c^{2024} \equiv -b^{2024}$, $p \mid a^2b^{2023}+b^{2024}c \implies p \mid b^{2023}(a^2+bc)$ $\implies \boxed{p \mid a^2+bc}...(A)$ $\implies a^2 \equiv -bc \pmod{p}$ From $(iii)$, we have: $p \mid a^{2025}+c^{2025} \implies p \mid a.(bc)^{1012}+c^{2025}$ $\implies p \mid c^{1012}(ab^{1012}+c^{1013})$ $\implies p \mid a^2b^{2024}-c^{2026}$ Combining with $(ii)$, we get: $p \mid a^2b^{2024}+b^{2024}c^2 \implies p \mid b^{2024}(a^2+c^2)$ $\implies \boxed{p \mid a^2+c^2}...(B)$ Therefore, from $(A)$ and $(B)$, we have: $p \mid c(b-c) \implies b \equiv c \pmod{p}$ But then, in $(ii)$, $p\mid 2b^{2024} \implies p \mid 2$, which is a contradiction! Then, $p$ must divide one of $a,b,c$. If $p$ divides any one of the numbers, $p$ must divide all the numbers individually, and we're done!
09.05.2024 17:17
$$a^{2023} \equiv -b^{2023} \pmod{p} $$$$b^{2024} \equiv -c^{2024} \pmod{p} $$$$c^{2025} \equiv -a^{2025} \pmod{p} $$ Let $n$=2023×2024×2025 $$\implies a^{n} \equiv b^{n} \pmod{p} $$$$\implies b^{n} \equiv -c^{n} \pmod{p} $$$$\implies a^{n} \equiv c^{n} \pmod{p} $$And from this we get $$c^{n} \equiv -c^{n} \pmod{p} $$and we are done
09.05.2024 17:23
shafikbara48593762 wrote: $$a^{2023} \equiv -b^{2023} \pmod{p} $$$$b^{2024} \equiv -c^{2024} \pmod{p} $$$$c^{2025} \equiv -a^{2025} \pmod{p} $$ Let $n$=2023×2024×2025 $$\implies a^{n} \equiv b^{n} \pmod{p} $$$$\implies b^{n} \equiv -c^{n} \pmod{p} $$$$\implies a^{n} \equiv c^{n} \pmod{p} $$And from this we get $$c^{n} \equiv -c^{n} \pmod{p} $$and we are done what a solution!!! I was surprised by how organized and simple this solution was, it is a MASTERPIECE!
09.05.2024 17:26
E.Sultan wrote: shafikbara48593762 wrote: $$a^{2023} \equiv -b^{2023} \pmod{p} $$$$b^{2024} \equiv -c^{2024} \pmod{p} $$$$c^{2025} \equiv -a^{2025} \pmod{p} $$ Let $n$=2023×2024×2025 $$\implies a^{n} \equiv b^{n} \pmod{p} $$$$\implies b^{n} \equiv -c^{n} \pmod{p} $$$$\implies a^{n} \equiv c^{n} \pmod{p} $$And from this we get $$c^{n} \equiv -c^{n} \pmod{p} $$and we are done what a solution!!! I was surprised by how organized and simple this solution was, it is a MASTERPIECE! Thx bro Such an easy problem for INMO P3
07.06.2024 03:02
Note that if $p\mid a$, then \[a^{2023}+b^{2023}\equiv 0 \mod p,\]\[\iff b^{2023} \equiv 0 \mod p,\]\[\iff p\mid b,\]and similarly we can find that $p\mid c$. In general, using a similar proof, it can be shown that if $p\mid abc$, then $p$ divides each of $a$, $b$, and $c$. FTSOC, assume that $p$ divides none of $a$, $b$, or $c$. Now, notice that \[a^{2023}+b^{2023}\equiv 0 \mod p,\]\[\iff a^{2023}\equiv -b^{2023} \mod p,\]\[\iff \left(\frac{a}{b}\right)^{2023}\equiv -1 \mod p,\]\[\iff ord_p\left(\frac{a}{b}\right) \mid 4046 \text{ and } 2\mid ord_p\left(\frac{a}{b}\right),\]since we had that $\left(\frac{a}{b}\right)^{2023}\equiv -1 \mod p$. Similarly, from the second equation, we get that \[ord_p\left(\frac{b}{c}\right) \mid 4048 \text{ and } 16\mid ord_p\left(\frac{b}{c}\right).\] Now, since $p$ is prime, it is well-known that it must have a primitive root. Let said primitive root be $g$ and define $m$ and $n$ to be the unique integers such that $\frac{a}{b}\equiv g^m\mod p$ and $\frac{b}{c}\equiv g^n\mod p$, where $1\leq m,n\leq p-1$. Now, notice that if \[2\mid ord_p\left(\frac{a}{b}\right) \text{ and } ord_p\left(\frac{a}{b}\right) \mid 4046,\]we get that \[\nu_2\left(ord_p\left(\frac{a}{b}\right)\right)=1,\]which in turn gives that \[\nu_2(m)=\nu_2(p-1)-1,\]since the order of $g$ mod $p$ is $p-1$. Similarly, if \[16\mid ord_p\left(\frac{b}{c}\right) \text{ and } ord_p\left(\frac{b}{c}\right) \mid 4048,\]then we have that \[\nu_2(n)=\nu_2(p-1)-4.\] Now, notice that \[\frac{a}{c}\equiv \left(\frac{a}{b}\right)\left(\frac{b}{c}\right)\equiv g^{m+n} \mod p,\]which means that \[\nu_2\left(ord_p\left(\frac{a}{c}\right)\right)=\nu_2(p-1)-\nu_2(m+n).\]However, since \[\nu_2(p-1)-1=\nu_2(m)>\nu_2(n)=\nu_2(p-1)-4,\]we get that \[\nu_2(m+n)=\nu_2(p-1)-4,\]which gives that \[\nu_2\left(ord_p\left(\frac{a}{c}\right)\right)=\nu_2(p-1)-(\nu_2(p-1)-4)=4.\] However, we had that \[c^{2025}+a^{2025}\equiv 0 \mod p,\]\[\iff a^{2025}\equiv -c^{2025} \mod p,\]\[\iff \left(\frac{a}{c}\right)^{2025}\equiv -1 \mod p,\]\[\iff ord_p\left(\frac{a}{c}\right) \mid 4050,\]a contradiction, since $16$ does not divide $4050$. Therefore $p$ must divide each of $a$, $b$, and $c$, as desired, finishing the problem.
04.08.2024 20:16
If \( p \) divides one of \( a, b, c \), WLOG \( a \), we have \( p \mid b^{2023} \implies p \mid b \), \( p \mid c^{2025} \implies p \mid c \), so then \( p \) divides all of them. Assume, for the sake of contradiction, \( p \nmid a, b, c \). We have the following modular congruences: \[ \left(\frac{a}{b}\right)^{4046} \equiv 1 \pmod{p} \]\[ \left(\frac{b}{c}\right)^{4048} \equiv 1 \pmod{p} \]\[ \left(\frac{c}{a}\right)^{4050} \equiv 1 \pmod{p} \]Firstly, observe that \( p \mid a^{2023} + b^{2023} \implies p \mid a^{2025} + a^2b^{2023} \). Since \( p \mid a^{2025} + c^{2025} \), we have \( p \mid c^{2025} - a^2b^{2023} \). Further, \( p \mid b^{2024} + c^{2024} \implies p \mid c^{2025} + b^{2024}c \). From this, we conclude that: \[ p \mid b^{2024}c + a^2b^{2023} = b^{2023}(bc + a^2) \implies a^2 \equiv -bc \pmod{p} \]since \( p \nmid b^{2023} \). We have \( a^{4046} \equiv -(bc)^{2023} \), which, replacing in our first congruence, gives \( c^{2023} \equiv -b^{2023} \pmod{p} \implies c^{4046} \equiv b^{4046} \pmod{p} \). Replacing this in our second congruence, we have \[ \frac{b^{4046}}{c^{4046}} \cdot \frac{b^2}{c^2} \equiv 1 \pmod{p} \implies b^2 \equiv c^2 \pmod{p} \implies b^{2024} \equiv c^{2024} \pmod{p} \]Therefore, \( b^{2024} + c^{2024} \equiv 2b^{2024} \equiv 0 \pmod{p} \). Since \( p \) is odd, we have \( p \mid b^{2024} \implies p \mid b \), which gives \( p \mid a, c \) as well, so we are done. Edit: I would like to see a solution that doesn't use the even parity of 2024.
15.12.2024 21:51
Raise everything to the power of 2023x2024x2025 mod p, then p divides a^2023x2024x2025 + or - c^2023x2024x2025 which gives p | a and the rest follows
11.01.2025 22:05
I have discussed this question in my INMO 2024 video on my channel "little fermat". Here is the Video