Find all strictly ascending functions $f$ such that for all $x\in \mathbb R$, \[f(1-x)=1-f(f(x)).\]
1997 Iran MO (3rd Round)
First Exam
Show that for any arbitrary triangle $ABC$, we have \[\sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) \leq \frac{abc}{(a+b)(b+c)(c+a)}.\]
There are $30$ bags and there are $100$ similar coins in each bag (coins in each bag are similar, coins of different bags can be different). The weight of each coin is an one digit number in grams. We have a digital scale which can weigh at most $999$ grams in each weighing. Using this scale, we want to find the weight of coins of each bag. (a) Show that this operation is possible by $10$ times of weighing, and (b) It's not possible by $9$ times of weighing.
Second Exam
Let $P$ be a polynomial with integer coefficients. There exist integers $a$ and $b$ such that $P(a) \cdot P(b)=-(a-b)^2$. Prove that $P(a)+P(b)=0$.
Let $ABC$ and $XYZ$ be two triangles. Define \[A_1=BC\cap ZX, A_2=BC\cap XY,\]\[B_1=CA\cap XY, B_2=CA\cap YZ,\]\[C_1=AB\cap YZ, C_2=AB\cap ZX.\] Hereby, the abbreviation $g\cap h$ means the point of intersection of two lines $g$ and $h$. Prove that $\frac{C_1C_2}{AB}=\frac{A_1A_2}{BC}=\frac{B_1B_2}{CA}$ holds if and only if $\frac{A_1C_2}{XZ}=\frac{C_1B_2}{ZY}=\frac{B_1A_2}{YX}$.
Let $d$ be a real number such that $d^2=r^2+s^2$, where $r$ and $s$ are rational numbers. Prove that we can color all points of the plane with rational coordinates with two different colors such that the points with distance $d$ have different colors.
Third Exam
Suppose that $a, b, x$ are positive integers such that \[x^{a+b}=a^bb\] Prove that $a=x$ and $b=x^x$.
In an acute triangle $ABC$, points $D,E,F$ are the feet of the altitudes from $A,B,C$, respectively. A line through $D$ parallel to $EF$ meets $AC$ at $Q$ and $AB$ at $R$. Lines $BC$ and $EF$ intersect at $P$. Prove that the circumcircle of triangle $PQR$ passes through the midpoint of $BC$.
Let $S = \{x_0, x_1,\dots , x_n\}$ be a finite set of numbers in the interval $[0, 1]$ with $x_0 = 0$ and $x_1 = 1$. We consider pairwise distances between numbers in $S$. If every distance that appears, except the distance $1$, occurs at least twice, prove that all the $x_i$ are rational.
Let $x, y, z$ be real numbers greater than $1$ such that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2$. Prove that \[\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\leq \sqrt{x+y+z}.\]
In an acute triangle $ABC$ let $AD$ and $BE$ be altitudes, and $AP$ and $BQ$ be bisectors. Let $I$ and $O$ be centers of incircle and circumcircle, respectively. Prove that the points $D, E$, and $I$ are collinear if and only if the points $P, Q$, and $O$ are collinear.
Let $\mathcal P$ be the set of all points in $\mathbb R^n$ with rational coordinates. For the points $A,B \in \mathcal l{P}$, one can move from $A$ to $B$ if the distance $AB$ is $1$. Prove that every point in $\mathcal l{ P}$ can be reached from any other point in $\mathcal{P}$ by a finite sequence of moves if and only if $n \geq 5$.