Show that for any arbitrary triangle $ABC$, we have \[\sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) \leq \frac{abc}{(a+b)(b+c)(c+a)}.\]
Problem
Source: Iran Third Round MO 1997, Exam 1, P2
Tags: inequalities, trigonometry, geometry, circumcircle, geometry proposed
18.02.2006 09:32
\[ \prod \frac{a}{b+c}= \prod \frac{\sin{A}}{\sin{B}+\sin{C}} = \frac{\sin{\frac{A}{2}}\cos{\frac{A}{2}}}{\frac{\sin{B}+\sin{C}}{2}} \] $\sin{x}$ is concave on $[0, \pi]$, thus: \[ \frac{\sin{B}+\sin{C}}{2} \leq \sin{\frac{B+C}{2}}=\cos{\frac{A}{2}} \] Pluge it in we get the desired ineqaulity. Equality holds if and only if $\angle{A}=\angle{B}=\angle{C}$.
18.02.2006 12:28
Lemma. $\triangle ABC\Longrightarrow \boxed {\ \sin \frac A2\le \frac{a}{b+c}\ }\ \ (*)\ .$ The first method. Define: the second intersection $A'$ between the circumcircle $C(O,R)$ and the bisector $[AI$ of the angle $\widehat {BAC}$; the intersection $D\in BC\cap AI$ $(l_a=AD)$. From the well-known relations $l_a=\frac{2bc}{b+c}\cdot \cos \frac A2$ and $AA'\cdot AD=bc$ $(ABA'\sim ADC)$ results: $AA'\le 2R$ $\Longrightarrow$ $bc\le 2Rl_a$ $\Longleftrightarrow$ $bc\le 2R\cdot \frac{2bc}{b+c}\cdot\cos\frac A2$ $\Longleftrightarrow$ $b+c\le 4R\cos \frac A2$ $\Longleftrightarrow$ $\frac{b+c}{a}\le 2\cdot \frac{\cos \frac A2 }{\sin A}$ $\Longleftrightarrow$ $\frac{b+c}{a}\le \frac{1}{\sin \frac A2}$ $\Longleftrightarrow$ $\sin \frac A2\le \frac{a}{b+c}\ .$ Therefore, the inequality $(*)$ is equivalently with $AA'\le 2R\ !$ The second method. Using the identity $bc=p(p-a)+(p-b)(p-c)$ results: $(*)\Longleftrightarrow \sqrt{\frac{(p-b)(p-c)}{bc}}\le \frac{a}{b+c}$ $\Longleftrightarrow$ $(p-b)(p-c)(b+c)^2\le a^2bc$ $\Longleftrightarrow$ $(p-b)(p-c)(b+c)^2\le a^2 [p(p-a)+(p-b)(p-c)]$ $\Longleftrightarrow$ $(p-b)(p-c)\left[(b+c)^2-a^2\right]\le a^2p(p-a)$ $\Longleftrightarrow$ $4p(p-a)(p-b)(p-c)\le a^2p(p-a)\Longleftrightarrow 4(p-b)(p-c)\le a^2\Longleftrightarrow$ $a^2-(b-c)^2\le a^2\Longleftrightarrow (b-c)^2\ge 0$, what is truly. Remark. Using this lemma, the proposed inequality is a immediate consequence. The equality holds if and only if $a=b=c$. Moreover prove easily that $\boxed {\frac 12\left(\frac rR\right)^2\le \boxed {\prod \sin \frac A2\le \prod \frac{a}{b+c}}\le \frac 18}\ .$
24.02.2006 02:11
Well, I want to point some remarks here. This inequality is equivalent with \[ \frac{R}{r}\geq\frac{(a+b)(b+c)(c+a)}{4abc}. \] If I'm not mistaken this was proposed by Dorin Andrica in 1984 in Romanian Olympiad. Anyway, related to this one here is a stronger one, but all acute-angled triangle: \[ \frac{R}{r}\geq\sqrt{\frac{(a^{2}+b^{2})(b^{2}+c^{2})(c^{2}+a^{2})}{2a^{2}b^{2}c^{2}}}. \] This inequality has been proposed for the first time by Tudorel Lupu and Dumitru Anton in local olympiad in Constantza in 1988. In 1997, the same problem appears in American Mathematical Monthly due to Mihaly Bencze and Florin Popovici.
24.02.2006 07:22
Thanks Cezar for Remarks.
04.07.2012 07:51
Cezar Lupu wrote: Well, I want to point some remarks here. This inequality is equivalent with \[ \frac{R}{r}\geq\frac{(a+b)(b+c)(c+a)}{4abc}. \] If I'm not mistaken this was proposed by Dorin Andrica in 1984 in Romanian Olympiad. Anyway, related to this one here is a stronger one, but all acute-angled triangle: \[ \frac{R}{r}\geq\sqrt{\frac{(a^{2}+b^{2})(b^{2}+c^{2})(c^{2}+a^{2})}{2a^{2}b^{2}c^{2}}}. \] This inequality has been proposed for the first time by Tudorel Lupu and Dumitru Anton in local olympiad in Constantza in 1988. In 1997, the same problem appears in American Mathematical Monthly due to Mihaly Bencze and Florin Popovici. \[\frac{R}{r} \ge \frac{1}{2}\left(\frac{64a^2b^2c^2}{(4a^2-(b-c)^2)(4b^2-(c-a)^2)(4c^2-(a-b)^2)}\right)^2.\] (India tst 2006 p7) http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=485987
04.07.2012 08:02
Amir.S wrote: Show that for any arbitrary triangle $ABC$, we have \[\sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) \leq \frac{abc}{(a+b)(b+c)(c+a)}.\] Show that for any arbitrary triangle $ABC$, we have \[\cos^2A+\cos^2B+\cos^2C\geq \frac{1}{2}(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}.+\frac{c^2}{a^2+b^2}).\]
04.07.2012 16:02
Sqing, a nice problem! Here is the solution:
Attachments:
Problem04072012.pdf (17kb)
04.07.2012 16:18
vslmat wrote: Sqing, a nice problem! Here is the solution: Very Good. But ,only for acute triangle was founded.
04.07.2012 19:19
Oh, Sqing, sorry for being so careless! The second part of the solution is here
Attachments:
Problem04072012_b.pdf (18kb)
04.07.2012 21:40
$a^2=(c\cdot\cos B+b\cdot\cos C)^2\stackrel{\mathrm{(C.B.S)}}{\ \le\ }\left(c^2+b^2\right)\left(\cos^2B+\cos^2C\right)\implies$ $\sum\left(\cos^2B+\cos^2C\right)\ge \sum \frac {a^2}{b^2+c^2}\implies$ $\sum\cos^2A\ge\frac 12\cdot \sum \frac {a^2}{b^2+c^2}$ .
05.07.2012 02:43
vslmat wrote: Oh, Sqing, sorry for being so careless! The second part of the solution is here Dear vslmat . Right triangle?
10.05.2014 17:56
$\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}=\frac{\cosh+\cosh+\cosh-1}{4}$ Thus it suffices to prove that $\sum{\frac{a^2+b^2-c^2}{8ab}}-\frac{1}{4} \le \frac{abc}{(a+b)(b+c)(c+a)}$ $\Leftrightarrow \sum_{%Error. "cyclic" is a bad command. }{a^2b}+\sum_{%Error. "cyclic" is a bad command. }{ab^2}-\sum{a^3}-2abc \le \frac{8a^2b^2c^2}{(a+b)(b+c)(c+a)}$ Expanding both the sides and using Muirhead's theorem does the job!!
12.01.2018 17:44
sqing wrote: Show that for any arbitrary triangle $ABC$, we have \[\cos^2A+\cos^2B+\cos^2C\geq \frac{1}{2}(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}.+\frac{c^2}{a^2+b^2}).\] International Zhautykov Olympiad 2018/1
15.01.2018 11:16
sqing wrote: Show that for any arbitrary triangle $ABC$, we have \[\cos^2A+\cos^2B+\cos^2C\geq \frac{1}{2}(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}.+\frac{c^2}{a^2+b^2}).\] Proof of zhumazhenis: $$\cos^2A+\cos^2B=\frac{\left(c^2+b^2-a^2\right)^2}{4b^2c^2}+\frac{\left(c^2+a^2-b^2\right)^2}{4a^2c^2}\geq\frac{4c^4}{4c^2(a^2+b^2)}=\frac{c^2}{a^2+b^2}$$Very nice.
29.03.2018 15:57
sqing wrote: Show that for any arbitrary triangle $ABC$, we have \[\cos^2A+\cos^2B+\cos^2C\geq \frac{1}{2}(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}.+\frac{c^2}{a^2+b^2}).\] it was here http://artofproblemsolving.com/community/c6h423450p2394999
29.03.2018 17:37
mudok wrote: sqing wrote: Show that for any arbitrary triangle $ABC$, we have \[\cos^2A+\cos^2B+\cos^2C\geq \frac{1}{2}(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}.+\frac{c^2}{a^2+b^2}).\] it was here http://artofproblemsolving.com/community/c6h423450p2394999 Yeah.
29.03.2018 22:28
\(\prod \frac{a}{b+c}= \prod \frac{\sin{A}}{\sin{B}+\sin{C}}\) Could you explain how you can conclude this?
29.03.2018 22:33
Evenprime123 wrote: \(\prod \frac{a}{b+c}= \prod \frac{\sin{A}}{\sin{B}+\sin{C}}\) Could you explain how you can conclude this? It is just the sine rule