2020 Brazil Team Selection Test

February 7th, 2020 - Test 1

1

The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\]for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).

2

We say that a set $S$ of integers is rootiful if, for any positive integer $n$ and any $a_0, a_1, \cdots, a_n \in S$, all integer roots of the polynomial $a_0+a_1x+\cdots+a_nx^n$ are also in $S$. Find all rootiful sets of integers that contain all numbers of the form $2^a - 2^b$ for positive integers $a$ and $b$.

3

Let $x_1, x_2, \dots, x_n$ be different real numbers. Prove that \[\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}=\left\{\begin{array}{ll} 0, & \text { if } n \text { is even; } \\ 1, & \text { if } n \text { is odd. } \end{array}\right.\]

4

Let $\mathcal L$ be the set of all lines in the plane and let $f$ be a function that assigns to each line $\ell\in\mathcal L$ a point $f(\ell)$ on $\ell$. Suppose that for any point $X$, and for any three lines $\ell_1,\ell_2,\ell_3$ passing through $X$, the points $f(\ell_1),f(\ell_2),f(\ell_3)$, and $X$ lie on a circle. Prove that there is a unique point $P$ such that $f(\ell)=P$ for any line $\ell$ passing through $P$. Australia

APMO 2020 - Test 2

1

Let $\Gamma$ be the circumcircle of $\triangle ABC$. Let $D$ be a point on the side $BC$. The tangent to $\Gamma$ at $A$ intersects the parallel line to $BA$ through $D$ at point $E$. The segment $CE$ intersects $\Gamma$ again at $F$. Suppose $B$, $D$, $F$, $E$ are concyclic. Prove that $AC$, $BF$, $DE$ are concurrent.

2

Show that $r = 2$ is the largest real number $r$ which satisfies the following condition: If a sequence $a_1$, $a_2$, $\ldots$ of positive integers fulfills the inequalities \[a_n \leq a_{n+2} \leq\sqrt{a_n^2+ra_{n+1}}\]for every positive integer $n$, then there exists a positive integer $M$ such that $a_{n+2} = a_n$ for every $n \geq M$.

3

Determine all positive integers $k$ for which there exist a positive integer $m$ and a set $S$ of positive integers such that any integer $n > m$ can be written as a sum of distinct elements of $S$ in exactly $k$ ways.

4

Let $\mathbb{Z}$ denote the set of all integers. Find all polynomials $P(x)$ with integer coefficients that satisfy the following property: For any infinite sequence $a_1$, $a_2$, $\dotsc$ of integers in which each integer in $\mathbb{Z}$ appears exactly once, there exist indices $i < j$ and an integer $k$ such that $a_i +a_{i+1} +\dotsb +a_j = P(k)$.

5

Let $n \geq 3$ be a fixed integer. The number $1$ is written $n$ times on a blackboard. Below the blackboard, there are two buckets that are initially empty. A move consists of erasing two of the numbers $a$ and $b$, replacing them with the numbers $1$ and $a+b$, then adding one stone to the first bucket and $\gcd(a, b)$ stones to the second bucket. After some finite number of moves, there are $s$ stones in the first bucket and $t$ stones in the second bucket, where $s$ and $t$ are positive integers. Find all possible values of the ratio $\frac{t}{s}$.

Cyberspace Mathematical Competition - Test 3 Day 1

1

Consider an $n\times n$ unit-square board. The main diagonal of the board is the $n$ unit squares along the diagonal from the top left to the bottom right. We have an unlimited supply of tiles of this form: [asy][asy] size(1.5cm); draw((0,1)--(1,1)--(1,2)--(0,2)--(0,1)--(0,0)--(1,0)--(2,0)--(2,1)--(1,1)--(1,0)); [/asy][/asy] The tiles may be rotated. We wish to place tiles on the board such that each tile covers exactly three unit squares, the tiles do not overlap, no unit square on the main diagonal is covered, and all other unit squares are covered exactly once. For which $n\geq 2$ is this possible? Proposed by Daniel Kohen

2

Let $f(x) = 3x^2 + 1$. Prove that for any given positive integer $n$, the product $$f(1)\cdot f(2)\cdot\dots\cdot f(n)$$has at most $n$ distinct prime divisors. Proposed by Géza Kós

3

Let $ABC$ be a triangle such that $AB > BC$ and let $D$ be a variable point on the line segment $BC$. Let $E$ be the point on the circumcircle of triangle $ABC$, lying on the opposite side of $BC$ from $A$ such that $\angle BAE = \angle DAC$. Let $I$ be the incenter of triangle $ABD$ and let $J$ be the incenter of triangle $ACE$. Prove that the line $IJ$ passes through a fixed point, that is independent of $D$. Proposed by Merlijn Staps

4

Let $n$ be an odd positive integer. Some of the unit squares of an $n\times n$ unit-square board are colored green. It turns out that a chess king can travel from any green unit square to any other green unit squares by a finite series of moves that visit only green unit squares along the way. Prove that it can always do so in at most $\tfrac{1}{2}(n^2-1)$ moves. (In one move, a chess king can travel from one unit square to another if and only if the two unit squares share either a corner or a side.) Proposed by Nikolai Beluhov

Cyberspace Mathematical Competition - Test 3 Day 2

5

There are $2020$ positive integers written on a blackboard. Every minute, Zuming erases two of the numbers and replaces them by their sum, difference, product, or quotient. For example, if Zuming erases the numbers $6$ and $3$, he may replace them with one of the numbers in the set $\{6+3, 6-3, 3-6, 6\times 3, 6\div 3, 3\div 6\}$ $= \{9, 3, 3, 18, 2, \tfrac 12\}$. After $2019$ minutes, Zuming writes the single number $-2020$ on the blackboard. Show that it was possible for Zuming to have ended up with the single number $2020$ instead, using the same rules and starting with the same $2020$ integers. Proposed by Zhuo Qun (Alex) Song

6

Find all integers $n\geq 3$ for which the following statement is true: If $\mathcal{P}$ is a convex $n$-gon such that $n-1$ of its sides have equal length and $n-1$ of its angles have equal measure, then $\mathcal{P}$ is a regular polygon. (A regular polygon is a polygon with all sides of equal length, and all angles of equal measure.) Proposed by Ivan Borsenco and Zuming Feng

7

Each of the $n^2$ cells of an $n \times n$ grid is colored either black or white. Let $a_i$ denote the number of white cells in the $i$-th row, and let $b_i$ denote the number of black cells in the $i$-th column. Determine the maximum value of $\sum_{i=1}^n a_ib_i$ over all coloring schemes of the grid. Proposed by Alex Zhai

8

Let $a_1, a_2,\dots$ be an infinite sequence of positive real numbers such that for each positive integer $n$ we have \[\frac{a_1+a_2+\cdots+a_n}n\geq\sqrt{\frac{a_1^2+a_2^2+\cdots+a_{n+1}^2}{n+1}}.\] Prove that the sequence $a_1,a_2,\dots$ is constant. Proposed by Alex Zhai

October 2020 - IberoAmerican Test - Test 4

1

Determine if there is a positive integer $n$ such that for any $n$ consecutive positive integers, there is one of them(denote $c$) such that $c$ can be written as sum of consecutive integers(not necessarily all positive) of at most $2020$ distinct ways.

2

Let $m$ be a positive integer. Find the number of real solutions of the equation $$|\sum_{k=0}^{m} \binom{2m}{2k}x^k|=|x-1|^m$$

3

Let $ABCD$ be a quadrilateral with a incircle $\omega$. Let $I$ be the center of $\omega$, suppose that the lines $AD$ and $BC$ intersect at $Q$ and the lines $AB$ and $CD$ intersect at $P$ with $B$ is in the segment $AP$ and $D$ is in the segment $AQ$. Let $X$ and $Y$ the incenters of $\triangle PBD$ and $\triangle QBD$ respectively. Let $R$ be the intersection of $PY$ and $QX$. Prove that the line $IR$ is perpendicular to $BD$.

4

A quadruple of integers $(a, b, c, d)$ is said good if $ad-bc=2020$. Two good quadruplets are said to be dissimilar if it is not possible to obtain one from the other using a finite number of applications of the following operations: $$(a,b,c,d) \rightarrow (-c,-d,a,b)$$$$(a,b,c,d) \rightarrow (a,b,c+a,d+b)$$$$(a,b,c,d) \rightarrow (a,b,c-a,d-b)$$ Let $A$ be a set of $k$ good quadruples, two by two dissimilar. Show that $k \leq 4284$.