2022 European Mathematical Cup

Junior

1

Determine all positive integers $n$ for which there exist positive divisors $a$, $b$, $c$ of $n$ such that $a>b>c$ and $a^2 - b^2$, $b^2 - c^2$, $a^2 - c^2$ are also divisors of $n$.

2

Find all pairs $(x,y)$ of positive real numbers such that $xy$ is an integer and $x+y = \lfloor x^2 - y^2 \rfloor$.

3

Let $ABC$ be an acute-angled triangle with $AC > BC$, with incircle $\tau$ centered at $I$ which touches $BC$ and $AC$ at points $D$ and $E$, respectively. The point $M$ on $\tau$ is such that $BM \parallel DE$ and $M$ and $B$ lie on the same halfplane with respect to the angle bisector of $\angle ACB$. Let $F$ and $H$ be the intersections of $\tau$ with $BM$ and $CM$ different from $M$, respectively. Let $J$ be a point on the line $AC$ such that $JM \parallel EH$. Let $K$ be the intersection of $JF$ and $\tau$ different from $F$. Prove that $ME \parallel KH$.

4

A collection $F$ of distinct (not necessarily non-empty) subsets of $X = \{1,2,\ldots,300\}$ is lovely if for any three (not necessarily distinct) sets $A$, $B$ and $C$ in $F$ at most three out of the following eight sets are non-empty \begin{align*}A \cap B \cap C, \ \ \ \overline{A} \cap B \cap C, \ \ \ A \cap \overline{B} \cap C, \ \ \ A \cap B \cap \overline{C}, \\ \overline{A} \cap \overline{B} \cap C, \ \ \ \overline{A} \cap B \cap \overline {C}, \ \ \ A \cap \overline{B} \cap \overline{C}, \ \ \ \overline{A} \cap \overline{B} \cap \overline{C} \end{align*}where $\overline{S}$ denotes the set of all elements of $X$ which are not in $S$. What is the greatest possible number of sets in a lovely collection?

Senior

1

Let $n\geq 3$ be a positive integer. Alice and Bob are playing a game in which they take turns colouring the vertices of a regular $n$-gon. Alice plays the first move. Initially, no vertex is coloured. Both players start the game with $0$ points. In their turn, a player colours a vertex $V$ which has not been coloured and gains $k$ points where $k$ is the number of already coloured neighbouring vertices of $V$. (Thus, $k$ is either $0$, $1$ or $2$.) The game ends when all vertices have been coloured and the player with more points wins; if they have the same number of points, no one wins. Determine all $n\geq 3$ for which Alice has a winning strategy and all $n\geq 3$ for which Bob has a winning strategy.

2

We say that a positive integer $n$ is lovely if there exist a positive integer $k$ and (not necessarily distinct) positive integers $d_1$, $d_2$, $\ldots$, $d_k$ such that $n = d_1d_2\cdots d_k$ and $d_i^2 \mid n + d_i$ for $i=1,2,\ldots,k$. a) Are there infinitely many lovely numbers? b) Is there a lovely number, greater than $1$, which is a perfect square of an integer?

3

Determine all functions $f: \mathbb{R} \to \mathbb{R}$ such that $$ f(x^3) + f(y)^3 + f(z)^3 = 3xyz $$for all real numbers $x$, $y$ and $z$ with $x+y+z=0$.

4

Five points $A$, $B$, $C$, $D$ and $E$ lie on a circle $\tau$ clockwise in that order such that $AB \parallel CE$ and $\angle ABC > 90^{\circ}$. Let $k$ be a circle tangent to $AD$, $CE$ and $\tau$ such that $k$ and $\tau$ touch on the arc $\widehat{DE}$ not containing $A$, $B$ and $C$. Let $F \neq A$ be the intersection of $\tau$ and the tangent line to $k$ passing through $A$ different from $AD$. Prove that there exists a circle tangent to $BD$, $BF$, $CE$ and $\tau$.