Problem

Source: European Mathematical Cup 2022, Senior Division, Problem 4

Tags: geometry, tangent, circle, trapezoid



Five points $A$, $B$, $C$, $D$ and $E$ lie on a circle $\tau$ clockwise in that order such that $AB \parallel CE$ and $\angle ABC > 90^{\circ}$. Let $k$ be a circle tangent to $AD$, $CE$ and $\tau$ such that $k$ and $\tau$ touch on the arc $\widehat{DE}$ not containing $A$, $B$ and $C$. Let $F \neq A$ be the intersection of $\tau$ and the tangent line to $k$ passing through $A$ different from $AD$. Prove that there exists a circle tangent to $BD$, $BF$, $CE$ and $\tau$.