2021-IMOC

Algebra

A1

Find all real numbers x that satisfies$$\sqrt{\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}-\frac{1}{\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}}}+\sqrt{1-\frac{1}{\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}}}=x.$$2021 IMOC Problems

A2

For any positive integers $n$, find all $n$-tuples of complex numbers $(a_1,..., a_n)$ satisfying $$(x+a_1)(x+a_2)\cdots (x+a_n)=x^n+\binom{n}{1}a_1 x^{n-1}+\binom{n}{2}a_2^2 x^{n-2}+\cdots +\binom{n}{n-1} a_{n-1}^{n-1}+\binom{n}{n}a_n^n.$$ Proposed by USJL.

A3

For any real numbers $x, y, z$ with $xyz + x + y + z = 4, $show that $$(yz + 6)^2 + (zx + 6)^2 + (xy + 6)^2 \geq 8 (xyz + 5).$$

A4

Find all functions $f \colon \mathbb{R} \to \mathbb{R}$ such that $f ( f ( x ) + y^2) = x - 1 + ( y+1)f(y)$ holds for all real numbers $x, y$.

A5

Let $M$ be an arbitrary positive real number greater than $1$, and let $a_1,a_2,...$ be an infinite sequence of real numbers with $a_n\in [1,M]$ for any $n\in \mathbb{N}$. Show that for any $\epsilon\ge 0$, there exists a positive integer $n$ such that $$\frac{a_n}{a_{n+1}}+\frac{a_{n+1}}{a_{n+2}}+\cdots+\frac{a_{n+t-1}}{a_{n+t}}\ge t-\epsilon$$holds for any positive integer $t$.

A6

Let $n$ be some positive integer and $a_1 , a_2 , \dots , a_n$ be real numbers. Denote $$S_0 = \sum_{i=1}^{n} a_i^2 , \hspace{1cm} S_1 = \sum_{i=1}^{n} a_ia_{i+1} , \hspace{1cm} S_2 = \sum_{i=1}^{n} a_ia_{i+2},$$where $a_{n+1} = a_1$ and $a_{n+2} = a_2.$ 1. Show that $S_0 - S_1 \geq 0$. 2. Show that $3$ is the minimum value of $C$ such that for any $n$ and $a_1 , a_2 , \dots , a_n,$ there holds $C(S_0 - S_1) \geq S_1 - S_2$.

A7

For any positive reals $a,b,c,d$ that satisfy $a^2 + b^2 + c^2 + d^2 = 4,$ show that $$\frac{a^3}{a+b} + \frac{b^3}{b+c} + \frac{c^3}{c+d} + \frac{d^3}{d+a} + 4abcd \leq 6.$$

A8

Find all functions $f : \mathbb{N} \to \mathbb{N}$ with $$f(x) + yf(f(x)) < x(1 + f(y)) + 2021$$holds for all positive integers $x,y.$

A9

For a given positive integer $n,$ find $$\sum_{k=0}^{n} \left(\frac{\binom{n}{k} \cdot (-1)^k}{(n+1-k)^2} - \frac{(-1)^n}{(k+1)(n+1)}\right).$$

A10

For any positive reals $x$, $y$, $z$ with $xyz + xy + yz + zx = 4$, prove that $$\sqrt{\frac{xy+x+y}{z}}+\sqrt{\frac{yz+y+z}{x}}+\sqrt{\frac{zx+z+x}{y}}\geq 3\sqrt{\frac{3(x+2)(y+2)(z+2)}{(2x + 1)(2y + 1)(2z + 1). }}$$

A11

Given $n \geq 2$ reals $x_1 , x_2 , \dots , x_n.$ Show that $$\prod_{1\leq i < j \leq n} (x_i - x_j)^2 \leq \prod_{i=0}^{n-1} \left(\sum_{j=1}^{n} x_j^{2i}\right)$$and find all the $(x_1 , x_2 , \dots , x_n)$ where the equality holds.

Combinatorics

C1

The numbers $1,2,\cdots,2021$ are arranged in a circle. For any $1 \le i \le 2021$, if $i,i+1,i+2$ are three consecutive numbers in some order such that $i+1$ is not in the middle, then $i$ is said to be a good number. Indices are taken mod $2021$. What is the maximum possible number of good numbers? CSJL

C2

Given a positive integer $N$. There are three squirrels that each have an integer. It is known that the largest integer and the least one differ by exactly $N$. Each time, the squirrel with the second largest integer looks at the squirrel with the largest integer. If the integers they have are different, then the squirrel with the second largest integer would be unhappy and attack the squirrel with the largest one, making its integer decrease by two times the difference between the two integers. If the second largest integer is the same as the least integer, only of the squirrels would attack the squirrel with the largest integer. The attack continues until the largest integer becomes the same as the second largest integer. What is the maximum total number of attacks these squirrels make? Proposed by USJL, ST.

C3

Two squirrels, Bushy and Jumpy, have collected $2021$ walnuts for the winter. Jumpy numbers the walnuts from 1 through $2021$, and digs $2021$ little holes in a circular pattern in the ground around their favourite tree. The next morning Jumpy notices that Bushy had placed one walnut into each hole, but had paid no attention to the numbering. Unhappy, Jumpy decides to reorder the walnuts, and Bushy decides to interfere with Jumpy. The two take turns to reorder the walnuts. Each time, Bushy chooses $1232$ walnuts and reorders them and then Jumpy chooses $n$ walnuts to reorder. Find the least positive integer $n$ such that whatever Bushy does, Jumpy can ensure that the $i$th hole from the left has the $i$th walnut Ift0501

C4

There is a city with many houses, where the houses are connected by some two-way roads. It is known that for any two houses $A,B$, there is exactly one house $C$ such that both $A,B$ are connected to $C$. Show that for any two houses not connected directly by a road, they have the same number of roads adjacent to them. ST

C5

A drunken person walks randomly on a tree. Each time, he chooses uniformly at random a neighbouring node and walks there. Show that wherever his starting point and goal are, the expected number of steps the person takes to reach the goal is always an integer. houkai

C6

Two people play a game on a graph with $2022$ points. Initially, there are no edges in the graph. They take turns and connect two non-neighbouring vertices with an edge. Whoever makes the graph connected loses. Which player has a winning strategy? ST, danny2915

C7

Given a positive integer $n$, an $n$-gun is a $2n$-mino that is formed by putting a $1 \times n$ grid and an $n \times 1$ grid side by side so that one of the corner unit squares of the first grid is next to one of the corner unit squares of the second grid. Find the minimum possible $k$ such that it is possible to color the infinite planar grid with $k$ colors such that any $n$-gun cannot cover two different squares with the same color. Itf0501

C8

Find all positive integers $m,n$ such that the $m \times n$ grid can be tiled with figures formed by deleting one of the corners of a $2 \times 3$ grid. usjl, ST

C9

In a simple graph, there exist two vertices $A,B$ such that there are exactly $100$ shortest paths from $A$ to $B$. Find the minimum number of edges in the graph. CSJL

C10

In a $100$ by $100$ grid, there is a spider and $100$ bugs. Each time, the spider can walk up, down, left or right, and the spider aims to visit all the squares with bugs to eat them all. The spider begins from the top-left corner. Show that no matter where the bugs are, the spider can always eat them all within $2000$ steps.

C11

In an $m \times n$ grid, each square is either filled or not filled. For each square, its value is defined as $0$ if it is filled and is defined as the number of neighbouring filled cells if it is not filled. Here, two squares are neighbouring if they share a common vertex or side. Let $f(m,n)$ be the largest total value of squares in the grid. Determine the minimal real constant $C$ such that $$\frac{f(m,n)}{mn} \le C$$holds for any positive integers $m,n$ CSJL

Geometry

G1

Let $\overline{BE}$ and $\overline{CF}$ be altitudes of triangle $ABC$, and let $D$ be the antipodal point of $A$ on the circumcircle of $ABC$. The lines $\overleftrightarrow{DE}$ and $\overleftrightarrow{DF}$ intersect $\odot(ABC)$ again at $Y$ and $Z$, respectively. Show that $\overleftrightarrow{YZ}$, $\overleftrightarrow{EF}$ and $\overleftrightarrow{BC}$ intersect at a point.

G2

Let the midline of $\triangle ABC$ parallel to $BC$ intersect the circumcircle $\Gamma$ of $\triangle ABC$ at $P$, $Q$, and the tangent of $\Gamma$ at $A$ intersects $BC$ at $T$. Show that $\measuredangle BTQ = \measuredangle PTA$.

G3

Let $I$ be the incenter of the acute triangle $\triangle ABC$, and $BI$, $CI$ intersect the altitude of $\triangle ABC$ through $A$ at $U$, $V$, respectively. The circle with $AI$ as a diameter intersects $\odot(ABC)$ again at $T$, and $\odot(TUV)$ intersects the segment $BC$ and $\odot(ABC)$ at $P$, $Q$, respectively. Let $R$ be another intersection of $PQ$ and $\odot(ABC)$. Show that $AR\parallel BC$.

G4

Let $D$ be a point on the side $AC$ of a triangle $ABC$. Suppose that the incircle of triangle $BCD$ intersects $BD$ and $CD$ at $X$, $Y$, respectively. Show that $XY$ passes through a fixed point when $D$ is moving on the side $AC$.

G5

The incircle of a cyclic quadrilateral $ABCD$ tangents the four sides at $E$, $F$, $G$, $H$ in counterclockwise order. Let $I$ be the incenter and $O$ be the circumcenter of $ABCD$. Show that the line connecting the centers of $\odot(OEG)$ and $\odot(OFH)$ is perpendicular to $OI$.

G6

Let $\Omega$ be the circumcircle of triangle $ABC$. Suppose that $X$ is a point on the segment $AB$ with $XB=XC$, and the angle bisector of $\angle BAC$ intersects $BC$ and $\Omega$ at $D$, $M$, respectively. If $P$ is a point on $BC$ such that $AP$ is tangent to $\Omega$ and $Q$ is a point on $DX$ such that $CQ$ is tangent to $\Omega$, show that $AB$, $CM$, $PQ$ are concurrent.

G7

The incircle of triangle $ABC$ tangents $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. Let the tangents of $E$, $F$ with respect to $\odot(AEF)$ intersect at $P$, and $X$ be a point on $BC$ such that $EF$, $DP$, $AX$ are concurrent. Define $Q$, $Y$ and $R$, $Z$ similarly. Show that $X$, $Y$, $Z$ are collinear.

G8

Let $P$ be an arbitrary interior point of $\triangle ABC$, and $AP$, $BP$, $CP$ intersect $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. Suppose that $M$ be the midpoint of $BC$, $\odot(AEF)$ and $\odot(ABC)$ intersect at $S$, $SD$ intersects $\odot(ABC)$ at $X$, and $XM$ intersects $\odot(ABC)$ at $Y$. Show that $AY$ is tangent to $\odot(AEF)$.

G9

Let the incenter and the $A$-excenter of $\triangle ABC$ be $I$ and $I_A$, respectively. Let $BI$ intersect $AC$ at $E$ and $CI$ intersect $AB$ at $F$. Suppose that the reflections of $I$ with respect to $EF$, $FI_A$, $EI_A$ are $X$, $Y$, $Z$, respectively. Show that $\odot(XYZ)$ and $\odot(ABC)$ are tangent to each other.

G10

Let $O$, $I$ be the circumcenter and the incenter of triangle $ABC$, respectively, and let the incircle tangents $BC$ at $D$. Furthermore, suppose that $H$ is the orthocenter of triangle $BIC$, $N$ is the midpoint of the arc $BAC$, and $X$ is the intersection of $OI$ and $NH$. If $P$ is the reflection of $A$ with respect to $OI$, show that $\odot(IDP)$ and $\odot(IHX)$ are tangent to each other.

G11

The incircle of $\triangle ABC$ tangents $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. The projections of $B$, $C$ to $AD$ are $U$, $V$, respectively; the projections of $C$, $A$ to $BE$ are $W$, $X$, respectively; and the projections of $A$, $B$ to $CF$ are $Y$, $Z$, respectively. Show that the circumcircle of the triangle formed by $UX$, $VY$, $WZ$ is tangent to the incircle of $\triangle ABC$.

Number Theory

N1

This problem consists of four parts. 1. Show that for any nonzero integers $m,n,$ and prime $p$, we have $v_p(mn)=v_p(m)+v_p(n).$ 2. Show that if an off prime $p$, a positive integer $k$ and integers $a,b$ satisfy $p \nmid ~^\text{'}~p|a-b$ and $p\nmid k$, then $v_p(a^k-b^k)=v_p(a-b).$ 3. Show that if $p$ is an off prime with $p|a-b$ and $p\nmid a,b$, then $v_p(a^p-b^p)=v_p(a-b)+1)$. 4. Show that if an odd prime $p$, a positive integer $k$ and integers $a,b$ satisfy $p\nmid a,b ~^\text{'}~ p|a-b$, then $v_p(a^k-b^k)=v_p(a-b)$. Proposed by LTE.

N2

Show that for any two distinct odd primes $p, q$, there exists a positive integer $n$ such that $$\{d(n), d(n + 2) \} = \{p, q\}$$where $d(n)$ is the smallest prime factor of $n$. Proposed By - ltf0501

N3

Define the function $f:\mathbb N_{>1}\to\mathbb N_{>1}$ such that $f(x)$ is the greatest prime factor of $x$. A sequence of positive integers $\{a_n\}$ satisfies $a_1=M>1$ and $$a_{n+1}=\begin{cases}a_n-f(a_n)&\text{if }a_n\text{ is composite.}\\a_n+k&\text{otherwise.}\end{cases}$$Show that for any positive integers $M,k$, the sequence $\{a_n\}$ is bounded. (TAN768092100853)

N4

There are $m \geq 3$ positive integers, not necessarily distinct, that are arranged in a circle so that any positive integer divides the sum of its neighbours. Show that if there is exactly one $1$, then for any positive integer $n$, there are at most $\phi(n)$ copies of $n$. Proposed By- (usjl, adapted from 2014 Taiwan TST)

N5

Find all sets $S$ of positive integers that satisfy all of the following. $1.$ If $a,b$ are two not necessarily distinct elements in $S$, then $\gcd(a,b)$, $ab$ are also in $S$. $2.$ If $m,n$ are two positive integers with $n\nmid m$, then there exists an element $s$ in $S$ such that $m^2\mid s$ and $n^2\nmid s$. $3.$ For any odd prime $p$, the set formed by moduloing all elements in $S$ by $p$ has size exactly $\frac{p+1}2$.

N6

Show that there do not exist positive integers $x,y,z$ such that $$x^x + y^y = 9^z$$ usjl

N7

Let $p$ be a given odd prime. Find the largest integer $k'$ such that it is possible to partition $\{1,2,\cdots,p-1\}$ into two sets $X,Y$ such that for any $k$ with $0 \le k \le k'$, $$\sum_{a \in X}a^k \equiv \sum_{b \in Y}b^k \pmod p$$ houkai

N8

Find all integer-valued polynomials $$f, g : \mathbb{N} \rightarrow \mathbb{N} \text{ such that} \; \forall \; x \in \mathbb{N}, \tau (f(x)) = g(x)$$holds for all positive integer $x$, where $\tau (x)$ is the number of positive factors of $x$ Proposed By - ckliao914

N9

Find all pairs of positive integers $(a,b)$ such that there exists a finite set $S$ satisfying that any positive integer can be written in the form $$n = x^a + y^b + s$$where $x,y$ are nonnegative integers and $s \in S$ CSJL

N10

A prime is called perfect if there is a permutation $a_1, a_2, \cdots, a_{\frac{p-1}{2}}, b_1, b_2, \cdots, b_{\frac{p-1}{2}}$ of $1, 2, \cdots, p-1$ satisfies $$b_i \equiv a_i + \frac{1}{a_i} \pmod p$$for all $1 \le i \le \frac{p-1}{2}$. Show that there are infinitely many primes that are not perfect. Proposed By - CSJL

N11

Let $p$ be an arbitrary odd prime and $\sigma(n)$ for $1 \le n \le p-1$ denote the inverse of $n \pmod p$. Show that the number of pairs $(a,b) \in \{1,2,\cdots,p-1\}^2$ with $a<b$ but $\sigma(a) > \sigma(b)$ is at least $$\left \lfloor \left(\frac{p-1}{4}\right)^2 \right \rfloor$$ usjl Note: Partial credits may be awarded if the $4$ in the statement is replaced with some larger constant