Problem

Source: IMOC 2021 N11

Tags: number theory



Let $p$ be an arbitrary odd prime and $\sigma(n)$ for $1 \le n \le p-1$ denote the inverse of $n \pmod p$. Show that the number of pairs $(a,b) \in \{1,2,\cdots,p-1\}^2$ with $a<b$ but $\sigma(a) > \sigma(b)$ is at least $$\left \lfloor \left(\frac{p-1}{4}\right)^2 \right \rfloor$$ usjl Note: Partial credits may be awarded if the $4$ in the statement is replaced with some larger constant