Let $ n \geq 3 $ be an integer and let \begin{align*} x_1,x_2, \ldots, x_n \end{align*}be $ n $ distinct integers. Prove that \begin{align*} (x_1 - x_2)^2 + (x_2 - x_3)^2 + \ldots + (x_n - x_1)^2 \geq 4n - 6. \end{align*}
2016 Saudi Arabia IMO TST
Level 4
Day I
Given a set of $2^{2016}$ cards with the numbers $1,2, ..., 2^{2016}$ written on them. We divide the set of cards into pairs arbitrarily, from each pair, we keep the card with larger number and discard the other. We now again divide the $2^{2015}$ remaining cards into pairs arbitrarily, from each pair, we keep the card with smaller number and discard the other. We now have $2^{2014}$ cards, and again divide these cards into pairs and keep the larger one in each pair. We keep doing this way, alternating between keeping the larger number and keeping the smaller number in each pair, until we have just one card left. Find all possible values of this final card.
Given two circles $(O_1)$ and $(O_2)$ intersect at $A$ and $B$. Let $d_1$ and $d_2$ be two lines through $A$ and be symmetric with respect to $AB$. The line $d_1$ cuts $(O_1)$ and $(O_2)$ at $G, E$ ($\ne A$), respectively, the line $d_2$ cuts $(O_1)$ and $(O_2)$ at $F, H$ ($\ne A$), respectively, such that $E$ is between $A, G$ and $F$ is between $A, H$. Let $J$ be the intersection of $EH$ and $FG$. The line $BJ$ cuts $(O_1), (O_2)$ at $K, L$ ($\ne B$), respectively. Let $N$ be the intersection of $O_1K$ and $O_2L$. Prove that the circle $(NLK)$ is tangent to $AB$.
Day II
Let $k$ be a positive integer. Prove that there exist integers $x$ and $y$, neither of which divisible by $7$, such that \begin{align*} x^2 + 6y^2 = 7^k. \end{align*}
Let $ABC$ be a triangle inscribed in the circle $(O)$ and $P$ is a point inside the triangle $ABC$. Let $D$ be a point on $(O)$ such that $AD \perp AP$. The line $CD$ cuts the perpendicular bisector of $BC$ at $M$. The line $AD$ cuts the line passing through $B$ and is perpendicular to $BP$ at $Q$. Let $N$ be the reflection of $Q$ through $M$. Prove that $CN \perp CP$.
Find all functions $f : R \to R$ such that $x[f(x + y) - f (x - y)] = 4y f (x)$ for any real numbers $x, y$.
Day III
Define the sequence $a_1, a_2,...$ as follows: $a_1 = 1$, and for every $n \ge 2$, $a_n = n - 2$ if $a_{n-1} = 0$ and $a_n = a_{n-1} - 1$, otherwise. Find the number of $1 \le k \le 2016$ such that there are non-negative integers $r, s$ and a positive integer $n$ satisfying $k = r + s$ and $a_{n+r} = a_n + s$.
Find all pairs of polynomials $P(x),Q(x)$ with integer coefficients such that $P(Q(x)) = (x - 1)(x - 2)...(x - 9)$ for all real numbers $x$
Let $n \ge 4$ be a positive integer and there exist $n$ positive integers that are arranged on a circle such that: $\bullet$ The product of each pair of two non-adjacent numbers is divisible by $2015 \cdot 2016$. $\bullet$ The product of each pair of two adjacent numbers is not divisible by $2015 \cdot 2016$. Find the maximum value of $n$
Day IV
Let $ABC$ be a triangle whose incircle $(I)$ touches $BC, CA, AB$ at $D, E, F$, respectively. The line passing through $A$ and parallel to $BC$ cuts $DE, DF$ at $M, N$, respectively. The circumcircle of triangle $DMN$ cuts $(I)$ again at $L$. a) Let $K$ be the intersection of $N E$ and $M F$. Prove that $K$ is the orthocenter of the triangle $DMN$. b) Prove that $A, K, L$ are collinear.
Let $a$ be a positive integer. Find all prime numbers $ p $ with the following property: there exist exactly $ p $ ordered pairs of integers $ (x, y)$, with $ 0 \leq x, y \leq p - 1 $, such that $ p $ divides $ y^2 - x^3 - a^2x $.
Find the number of permutations $ ( a_1, a_2, . \ . \ , a_{2016}) $ of the first $ 2016 $ positive integers satisfying the following two conditions: 1. $ a_{i+1} - a_i \leq 1$ for all $i = 1, 2, . \ . \ . , 2015$, and 2. There are exactly two indices $ i < j $ with $ 1 \leq i < j \leq 2016 $ such that $ a_i = i $ and $ a_j = j$.
Level 4+
Day I
Call a positive integer $N \ge 2$ special if for every k such that $2 \le k \le N, N$ can be expressed as a sum of $k$ positive integers that are relatively prime to $N$ (although not necessarily relatively prime to each other). Find all special positive integers.
same as level 4, day I, p2 - 2
Let $ABC$ be a triangle inscribed in $(O)$. Two tangents of $(O)$ at $B,C$ meets at $P$. The bisector of angle $BAC $ intersects $(P,PB)$ at point $E$ lying inside triangle $ABC$. Let $M,N$ be the midpoints of arcs $BC$ and $BAC$. Circle with diameter $BC$ intersects line segment $EN$ at $F$. Prove that the orthocenter of triangle $EFM$ lies on $BC$.
Day II
Let $ABC$ be a triangle inscribed in the circle $(O)$. The bisector of $\angle BAC$ cuts the circle $(O)$ again at $D$. Let $DE$ be the diameter of $(O)$. Let $G$ be a point on arc $AB$ which does not contain $C$. The lines $GD$ and $BC$ intersect at $F$. Let $H$ be a point on the line $AG$ such that $FH \parallel AE$. Prove that the circumcircle of triangle $HAB$ passes through the orthocenter of triangle $HAC$.
Find all functions $f : R \to R$ satisfying the conditions: 1. $f (x + 1) \ge f (x) + 1$ for all $x \in R$ 2. $f (x y) \ge f (x)f (y)$ for all $x, y \in R$
Given two positive integers $r > s$, and let $F$ be an infinite family of sets, each of size $r$, no two of which share fewer than $s$ elements. Prove that there exists a set of size $r -1$ that shares at least $s$ elements with each set in $F$.
Day III
same as level 4, day III, p1 - 1
same as level 4, day III, p3 - 2
Let $P \in Q[x]$ be a polynomial of degree $2016$ whose leading coefficient is $1$. A positive integer $m$ is nice if there exists some positive integer $n$ such that $m = n^3 + 3n + 1$. Suppose that there exist infinitely many positive integers $n$ such that $P(n)$ are nice. Prove that there exists an arithmetic sequence $(n_k)$ of arbitrary length such that $P(n_k)$ are all nice for $k = 1,2, 3$,
Day IV
On the Cartesian coordinate system $Oxy$, consider a sequence of points $A_n(x_n, y_n)$ in which $(x_n)^{\infty}_{n=1}$,$(y_n)^{\infty}_{n=1}$ are two sequences of positive numbers satisfing the following conditions: $$x_{n+1} =\sqrt{\frac{x_n^2+x_{n+2}^2}{2}}, y_{n+1} =\big( \frac{\sqrt{y_n}+\sqrt{y_{n+2}}}{2} \big)^2 \,\, \forall n \ge 1 $$Suppose that $O, A_1, A_{2016}$ belong to a line $d$ and $A_1, A_{2016}$ are distinct. Prove that all the points $A_2, A_3,. .. , A_{2015}$ lie on one side of $d$.
Let $ABCDEF$ be a convex hexagon with $AB = CD = EF$, $BC =DE = FA$ and $\angle A+\angle B = \angle C +\angle D = \angle E +\angle F$. Prove that $\angle A=\angle C=\angle E$ and $\angle B=\angle D=\angle F$. Tran Quang Hung
same as level 4, day IV, p3 - 3