2008 Postal Coaching

Set 1

1

For each positive $ x \in \mathbb{R}$, define $ E(x)=\{[nx]: n\in \mathbb{N}\}$ Find all irrational $ \alpha >1$ with the following property: If a positive real $ \beta$ satisfies $ E(\beta) \subset E(\alpha)$. then $ \frac{\beta}{\alpha}$ is a natural number.

2

Let $ABC$ be a triangle, $AD$ be the altitude from $A$ on to $BC$. Draw perpendiculars $DD_1$ and $DD_2$ from $D$ on to $AB$ and $AC$ respectively and let $p(A)$ be the length of the segment $D_1D_2$. Similarly define $p(B)$ and $p(C)$. Prove that $\frac{p(A)p(B)p(C)}{s^3}\le \frac18$ , where s is the semi-perimeter of the triangle $ABC$.

3

Prove that there exists an innite sequence $<a_n>$ of positive integers such that for each $k \ge 1$ $(a_1 - 1)(a_2 - 1)(a_3 -1)...(a_k - 1)$ divides $a_1a_2a_3 ...a_k + 1$.

4

Let $n \in N$ and $k$ be such that $1 \le k \le n$. Find the number of ordered $k$-tuples $(a_1, a_2,...,a_k)$ of integers such the $1 \le a_j \le n$, for $1 \le j \le k$ and either there exist $l,m \in \{1, 2,..., k\}$ such that $l < m$ but $a_l > a_m$ or there exists $l \in \{1, 2,..., k\}$ such that $a_l - l$ is an odd number.

5

Prove that there are infinitely many positive integers $n$ such that $\Delta = nr^2$, where $\Delta$ and $r$ are respectively the area and the inradius of a triangle with integer sides.

Set 2

1

Define a sequence $<x_n>$ by $x_0 = 0$ and $$\large x_n = \left\{ \begin{array}{ll} x_{n-1} + \frac{3^r-1}{2} & if \,\,n = 3^{r-1}(3k + 1)\\ & \\ x_{n-1} - \frac{3^r+1}{2} & if \,\, n = 3^{r-1}(3k + 2)\\ \end{array} \right. $$where $k, r$ are integers. Prove that every integer occurs exactly once in the sequence.

2

Let $ABC$ be an equilateral triangle, and let $K, L,M$ be points respectively on $BC, CA, AB$ such that $BK/KC = CL/LA = AM/MB =\lambda $. Find all values of $\lambda$ such that the circle with $BC$ as a diameter completely covers the triangle bounded by the lines $AK,BL,CM$.

3

Prove that for each natural number $m \ge 2$, there is a natural number $n$ such that $3^m$ divides $n^3 + 17$ but $3^{m+1}$ does not divide it.

4

Find all functions $f : R \to R$ such that $$f(xf(y))= (1 - y)f(xy) + x^2y^2f(y)$$for all reals $x, y$.

5

Let $n \in N$. Find the maximum number of irreducible fractions a/b (i.e., $gcd(a, b) = 1$) which lie in the interval $(0,1/n)$.

Set 3

1

Prove that for any $n \ge 1$, $LCM _{0\le k\le n} \big \{$ $n \choose k$ $\big\} = \frac{1}{n + 1} LCM \{1, 2,3,...,n + 1\}$

2

Does there exist a triangle $ABC$ whose sides are rational numbers and $BC$ equals to the altitude from $A$?

3

Let $ABC$ be a triangle. For any point $X$ on $BC$, let $AX$ meet the circumcircle of $ABC$ in $X'$. Prove or disprove: $XX'$ has maximum length if and only if $AX$ lies between the median and the internal angle bisector from $A$.

4

Find all real numbers$p, q$ for which the polynomial equation $P(x) = x^4 - \frac{8p^2}{q}x^3 + 4qx^2 - 3px + p^2 = 0$ has four positive roots.

5

Let $ A_1A_2...A_n$ be a convex polygon. Show that there exists an index $ j$ such that the circum-circle of the triangle $ A_j A_{j + 1} A_{j + 2}$ covers the polygon (here indices are read modulo n).

Set 4

1

Let $ABCD$ be a trapezium in which $AB$ is parallel to $CD$. The circles on $AD$ and $BC$ as diameters intersect at two distinct points $P$ and $Q$. Prove that the lines $PQ,AC,BD$ are concurrent.

2

Prove that an integer $n \ge 2$ is a prime if and only if $\phi (n)$ divides $(n - 1)$ and $(n + 1)$ divides $\sigma (n)$. [Here $\phi$ is the Totient function and $\sigma $ is the divisor - sum function.] Hint$n$ is squarefree

3

Find all real polynomials $P(x, y)$ such that $P(x+y, x-y) = 2P(x, y)$, for all $x, y$ in $R$.

4

An $8\times 8$ square board is divided into $64$ unit squares. A ’skew-diagonal’ of the board is a set of $8$ unit squares no two of which are in the same row or same column. Checkers are placed in some of the unit squares so that ’each skew-diagonal contains exactly two squares occupied by checkers’. Prove that there exist two rows or two columns which contain all the checkers.

5

Let $\omega$ be the semicircle on diameter $AB$. A line parallel to $AB$ intersects $\omega$ at $C$ and $D$ so that $B$ and $C$ lie on opposite sides of $AD$. The line through $C$ parallel to $AD$ meets $\omega$ again in $E$. Lines $BE$ and $CD$ meet in $F$ and the line through $F$ parallel to $AD$ meets $AB$ in $P$. Prove that $PC$ is tangent to $\omega$.

6

A set of points in the plane is called free if no three points of the set are the vertices of an equilateral triangle. Prove that any set of $n$ points in the plane has a free subset of at least $\sqrt{n}$ points

Set 5

1

In triangle $ABC,\angle B > \angle C, T$ is the midpoint of arc $BAC$ of the circumcicle of $ABC$, and $I$ is the incentre of $ABC$. Let $E$ be point such that $\angle AEI = 90^0$ and $AE$ is parallel to $BC$. If $TE$ intersects the circumcircle of $ABC$ at $P(\ne T)$ and $\angle B = \angle IPB$, determine $\angle A$.

2

Find all polynomials $P$ with integer coefficients such that wherever $a, b \in N$ and $a+b$ is a square we have $P(a) + P(b)$ is also a square.

3

Show that in a tournament of $799$ teams (every team plays with every other team for a win or loss), there exist $14$ teams such that the first seven teams have each defeated the remaining teams.

4

Show that for each natural number $n$, there exist $n$ distinct natural numbers whose sum is a square and whose product is a cube.

5

A convex quadrilateral $ABCD$ is given. There rays $BA$ and $CD$ meet in $P$, and the rays $BC$ and $AD$ meet in $Q$. Let $H$ be the projection of $D$ on $PQ$. Prove that $ABCD$ is cyclic if and only if the angle between the rays beginning at $H$ and tangent to the incircle of triangle $ADP$ is equal to the angle between the rays beginning at $H$ and tangent to the incircle of triangle $CDQ$. Also find out whether $ABCD$ is inscribable or circumscribable and justify.

6

Suppose $n$ straight lines are in the plane so that there exist seven points such that any of these line passes through at least three of these points. Find the largest possible value of $n$.

Set 6

1

Let $ABCD$ be a quadrilateral that can be inscribed in a circle. Denote by $P$ the intersection point of lines $AD$ and $BC$, and by $Q$ the intersection point of lines $AB$ and $DC$. Let $E$ be the fourth vertex of the parallelogram $ABCE$, and $F$ the intersection of lines $CE$ is $PQ$. Prove that the points $D,E, F$, and $Q$ lie on the same circle.

2

Show that if $n \ge 4, n \in N$ and $\big [ \frac{2^n}{n} ]$ is a power of $2$, then $n$ is a power of $2$.

3

Let $a$ and $b$ be two complex numbers. Prove the inequality $$|1 + ab| + |a + b| \ge \sqrt{|a^2 - 1| \cdot |b^2 - 1|}$$

4

Consider the set $A = \{1, 2, ..., n\}$, where $n \in N, n \ge 6$. Show that $A$ is the union of three pairwise disjoint sets, with the same cardinality and the same sum of their elements, if and only if $n$ is a multiple of $3$.

5

Consider the triangle $ABC$ and the points $D \in (BC),E \in (CA), F \in (AB)$, such that $\frac{BD}{DC}=\frac{CE}{EA}=\frac{AF}{FB}$. Prove that if the circumcenters of triangles $DEF$ and $ABC$ coincide, then the triangle $ABC$ is equilateral.

6

Consider the set $A = \{1, 2, 3, ..., 2008\}$. We say that a set is of type $r, r \in \{0, 1, 2\}$, if that set is a nonempty subset of $A$ and the sum of its elements gives the remainder $r$ when divided by $3$. Denote by $X_r, r \in \{0, 1, 2\}$ the class of sets of type $r$. Determine which of the classes $X_r, r \in \{0, 1, 2\}$, is the largest.