2011 Ukraine Team Selection Test

Day 1

1

Given a right $ n $ -angle $ {{A} _ {1}} {{A} _ {2}} \ldots {{A} _ {n}} $, $n \ge 4 $, and a point $ M $ inside it. Prove the inequality $$\sin (\angle {{A} _ {1}} M {{A} _ {2}}) + \sin (\angle {{A} _ {2}} M {{A} _ {3}} ) + \ldots + \sin (\angle {{A} _ {n}} M {{A} _ {1}})> \sin \frac{2 \pi}{n} + (n-2) sin \frac{\pi}{n}$$

2

2500 chess kings have to be placed on a $100 \times 100$ chessboard so that (i) no king can capture any other one (i.e. no two kings are placed in two squares sharing a common vertex); (ii) each row and each column contains exactly 25 kings. Find the number of such arrangements. (Two arrangements differing by rotation or symmetry are supposed to be different.) Proposed by Sergei Berlov, Russia

3

Given a positive integer $ n> 2 $. Prove that there exists a natural $ K $ such that for all integers $ k \ge K $ on the open interval $ ({{k} ^{n}}, \ {{(k + 1)} ^{n}}) $ there are $n$ different integers, the product of which is the $n$-th power of an integer.

Day 2

4

Suppose an ordered set of $ ({{a} _{1}}, \ {{a} _{2}},\ \ldots,\ {{a} _{n}}) $ real numbers, $n \ge 3 $. It is possible to replace the number $ {{a} _ {i}} $, $ i = \overline {2, \ n-1} $ by the number $ a_ {i} ^ {*} $ that $ {{a} _ {i}} + a_ {i} ^ {*} = {{a} _ {i-1}} + {{a} _ {i + 1}} $. Let $ ({{b} _ {1}},\ {{b} _ {2}}, \ \ldots, \ {{b} _ {n}}) $ be the set with the largest sum of numbers that can be obtained from this, and $ ({{c} _ {1}},\ {{c} _ {2}}, \ \ldots, \ {{c} _ {n}}) $ is a similar set with the least amount. For the odd $n \ge 3 $ and set $ (1,\ 3, \ \ldots, \ n, \ 2, \ 4, \ \ldots,\ n-1) $ find the values of the expressions $ {{b} _ {1}} + {{b} _ {2}} + \ldots + {{b} _ {n}} $ and $ {{c} _ {1}} + {{c} _ {2}} + \ldots + {{c} _ {n}} $.

5

Denote by $\mathbb{Q}^+$ the set of all positive rational numbers. Determine all functions $f : \mathbb{Q}^+ \mapsto \mathbb{Q}^+$ which satisfy the following equation for all $x, y \in \mathbb{Q}^+:$ \[f\left( f(x)^2y \right) = x^3 f(xy).\] Proposed by Thomas Huber, Switzerland

6

The circle $ \omega $ inscribed in triangle $ABC$ touches its sides $AB, BC, CA$ at points $K, L, M$ respectively. In the arc $KL$ of the circle $ \omega $ that does not contain the point $M$, we select point $S$. Denote by $P, Q, R, T$ the intersection points of straight $AS$ and $KM, ML$ and $SC, LP$ and $KQ, AQ$ and $PC$ respectively. It turned out that the points $R, S$ and $M$ are collinear. Prove that the point $T$ also lies on the line $SM$.

Day 3

7

Find all pairs $(m,n)$ of nonnegative integers for which \[m^2 + 2 \cdot 3^n = m\left(2^{n+1} - 1\right).\] Proposed by Angelo Di Pasquale, Australia

8

Is there an increasing sequence of integers $ 0 = {{a} _{0}} <{{a} _{1}} <{{a} _{2}} <\ldots $ for which the following two conditions are satisfied simultaneously: 1) any natural number can be given as $ {{a} _{i}} + {{a} _{j}} $ for some (possibly equal) $ i \ge 0 $, $ j \ge 0$ , 2) $ {{a} _ {n}}> \tfrac {{{n} ^ {2}}} {16} $ for all natural $ n $?

9

Inside the inscribed quadrilateral $ ABCD $, a point $ P $ is marked such that $ \angle PBC = \angle PDA $, $ \angle PCB = \angle PAD $. Prove that there exists a circle that touches the straight lines $ AB $ and $ CD $, as well as the circles circumscribed by the triangles $ ABP $ and $ CDP $.

Day 4

10

Let $ H $ be the point of intersection of the altitudes $ AP $ and $ CQ $ of the acute-angled triangle $ABC$. The points $ E $ and $ F $ are marked on the median $ BM $ such that $ \angle APE = \angle BAC $, $ \angle CQF = \angle BCA $, with point $ E $ lying inside the triangle $APB$ and point $ F $ is inside the triangle $CQB$. Prove that the lines $AE, CF$, and $BH$ intersect at one point.

11

Let $ P (x) $ and $ Q (x) $ be polynomials with real coefficients such that $ P (0)> 0 $ and all coefficients of the polynomial $ S (x) = P (x) \cdot Q (x) $ are integers. Prove that for any positive $ x $ the inequality holds: $$S ({{x} ^ {2}}) - {{S} ^ {2}} (x) \le \frac {1} {4} ({{P} ^ {2}} ({{ x} ^ {3}}) + Q ({{x} ^ {3}})). $$

12

Let $ n $ be a natural number. Consider all permutations $ ({{a} _ {1}}, \ \ldots, \ {{a} _ {2n}}) $ of the first $ 2n $ natural numbers such that the numbers $ | {{a} _ {i +1}} - {{a} _ {i}} |, \ i = 1, \ \ldots, \ 2n-1, $ are pairwise different. Prove that $ {{a} _ {1}} - {{a} _ {2n}} = n $ if and only if $ 1 \le {{a} _ {2k}} \le n $ for all $ k = 1, \ \ldots, \ n $.