The circle $ \omega $ inscribed in triangle $ABC$ touches its sides $AB, BC, CA$ at points $K, L, M$ respectively. In the arc $KL$ of the circle $ \omega $ that does not contain the point $M$, we select point $S$. Denote by $P, Q, R, T$ the intersection points of straight $AS$ and $KM, ML$ and $SC, LP$ and $KQ, AQ$ and $PC$ respectively. It turned out that the points $R, S$ and $M$ are collinear. Prove that the point $T$ also lies on the line $SM$.