1989 Romania Team Selection Test

BMO TST

1

Let $M$ denote the set of $m\times n$ matrices with entries in the set $\{0,1,2,3,4\}$ such that in each row and each column the sum of elements is divisible by $5$. Find the cardinality of set $M$.

2

Let $P$ be a point on a circle $C$ and let $\phi$ be a given angle incommensurable with $2\pi$. For each $n \in N, P_n$ denotes the image of $P$ under the rotation about the center $O$ of $C$ by the angle $\alpha_n = n \phi$. Prove that the set $M = \{P_n | n \ge 0\}$ is dense in $C$.

3

Let $ABCD$ be a parallelogram and $M,N$ be points in the plane such that $C \in (AM)$ and $D \in (BN)$. Lines $NA,NC$ meet lines $MB,MD$ at points $E,F,G,H$. Show that points $E,F,G,H$ lie on a circle if and only if $ABCD$ is a rhombus.

4

A family of finite sets $\left\{ A_{1},A_{2},.......,A_{m}\right\} $is called equipartitionable if there is a function $\varphi:\cup_{i=1}^{m}$$\rightarrow\left\{ -1,1\right\} $ such that $\sum_{x\in A_{i}}\varphi\left(x\right)=0$ for every $i=1,.....,m.$ Let $f\left(n\right)$ denote the smallest possible number of $n$-element sets which form a non-equipartitionable family. Prove that a) $f(4k +2) = 3$ for each nonnegative integer $k$, b) $f\left(2n\right)\leq1+m d\left(n\right)$, where $m d\left(n\right)$ denotes the least positive non-divisor of $n.$

5

A laticial cycle of length $n$ is a sequence of lattice points $(x_k, y_k)$, $k = 0, 1,\cdots, n$, such that $(x_0, y_0) = (x_n, y_n) = (0, 0)$ and $|x_{k+1} -x_{k}|+|y_{k+1} - y_{k}| = 1$ for each $k$. Prove that for all $n$, the number of latticial cycles of length $n$ is a perfect square.

IMO TST

Day 1

1

Let the sequence ($a_n$) be defined by $a_n = n^6 +5n^4 -12n^2 -36, n \ge 2$. (a) Prove that any prime number divides some term in this sequence. (b) Prove that there is a positive integer not dividing any term in the sequence. (c) Determine the least $n \ge 2$ for which $1989 | a_n$.

2

Find all monic polynomials $P(x),Q(x)$ with integer coefficients such that $Q(0) =0$ and $P(Q(x)) = (x-1)(x-2)...(x-15)$.

3

Find all pair $(m,n)$ of integer ($m >1,n \geq 3$) with the following property:If an $n$-gon can be partitioned into $m$ isoceles triangles,then the $n$-gon has two congruent sides.

4

Let $r,n$ be positive integers. For a set $A$, let ${A \choose r}$ denote the family of all $r$-element subsets of $A$. Prove that if $A$ is infinite and $f : {A \choose r} \to {1,2,...,n}$ is any function, then there exists an infinite subset $B$ of $A$ such that $f(X) = f(Y)$ for all $X,Y \in {B \choose r}$.

Day 2

1

Let $F$ be the set of all functions $f : N \to N$ which satisfy $f(f(x))-2 f(x)+x = 0$ for all $x \in N$. Determine the set $A =\{ f(1989) | f \in F\}$.

2

Let $a,b,c$ be coprime nonzero integers. Prove that for any coprime integers $u,v,w$ with $au+bv+cw = 0$ there exist integers $m,n, p$ such that $$\begin{cases} a = nw- pv \\ b = pu-mw \\ c = mv-nu \end{cases}$$

3

(a) Find the point $M$ in the plane of triangle $ABC$ for which the sum $MA + MB+ MC$ is minimal. (b) Given a parallelogram $ABCD$ whose angles do not exceed $120^o$, determine $min \{MA+ MB+NC+ND+ MN | M,N$ are in the plane $ABCD\}$ in terms of the sides and angles of the parallelogram.

4

Let $A,B,C$ be variable points on edges $OX,OY,OZ$ of a trihedral angle $OXYZ$, respectively. Let $OA = a, OB = b, OC = c$ and $R$ be the radius of the circumsphere $S$ of $OABC$. Prove that if points $A,B,C$ vary so that $a+b+c = R+l$, then the sphere $S$ remains tangent to a fixed sphere.

Day 3

1

Prove that $\sqrt {1+\sqrt {2+\ldots +\sqrt {n}}}<2$, $\forall n\ge 1$.

2

The sequence ($a_n$) is defined by $a_1 = a_2 = 1, a_3 = 199$ and $a_{n+1} =\frac{1989+a_na_{n-1}}{a_{n-2}}$ for all $n \ge 3$. Prove that all terms of the sequence are positive integers

3

Let $F$ be the boundary and $M,N$ be any interior points of a triangle $ABC$. Consider the function $f_{M,N}: F \to R$ defined by $f_{M,N}(P) = MP^2 +NP^2$ and let $\eta_{M,N}$ be the number of points $P$ for which $f{M,N}$ attains its minimum. (a) Prove that $1 \le \eta_{M,N} \le 3$. (b) If $M$ is fixed, find the locus of $N$ for which $\eta_{M,N} > 1$. (c) Prove that the locus of $M$ for which there are points $N$ such that $\eta_{M,N} = 3$ is the interior of a tangent hexagon.