Problem

Source: Romania IMO TST 1989 3.3

Tags: hexagon, Locus, geometry, min



Let $F$ be the boundary and $M,N$ be any interior points of a triangle $ABC$. Consider the function $f_{M,N}: F \to R$ defined by $f_{M,N}(P) = MP^2 +NP^2$ and let $\eta_{M,N}$ be the number of points $P$ for which $f{M,N}$ attains its minimum. (a) Prove that $1 \le \eta_{M,N} \le 3$. (b) If $M$ is fixed, find the locus of $N$ for which $\eta_{M,N} > 1$. (c) Prove that the locus of $M$ for which there are points $N$ such that $\eta_{M,N} = 3$ is the interior of a tangent hexagon.