Find the largest real number $k$, such that for any positive real numbers $a,b$, $$(a+b)(ab+1)(b+1)\geq kab^2$$
2019 South East Mathematical Olympiad
Grade 10
July 30th - Day 1
Two circles $\Gamma_1$ and $\Gamma_2$ intersect at $A,B$. Points $C,D$ lie on $\Gamma_1$, points $E,F$ lie on $\Gamma_2$ such that $A,B$ lies on segments $CE,DF$ respectively and segments $CE,DF$ do not intersect. Let $CF$ meet $\Gamma_1,\Gamma_2$ again at $K,L$ respectively, and $DE$ meet $\Gamma_1,\Gamma_2$ at $M,N$ respectively. If the circumcircles of $\triangle ALM$ and $\triangle BKN$ are tangent, prove that the radii of these two circles are equal.
Let $f:\mathbb{N}\rightarrow \mathbb{N}$ be a function such that $f(ab)$ divides $\max \{f(a),b\}$ for any positive integers $a,b$. Must there exist infinitely many positive integers $k$ such that $f(k)=1$?
As the figure is shown, place a $2\times 5$ grid table in horizontal or vertical direction, and then remove arbitrary one $1\times 1$ square on its four corners. The eight different shapes consisting of the remaining nine small squares are called banners. [asy][asy] defaultpen(linewidth(0.4)+fontsize(10));size(50); pair A=(-1,1),B=(-1,3),C=(-1,5),D=(-3,5),E=(-5,5),F=(-7,5),G=(-9,5),H=(-11,5),I=(-11,3),J=(-11,1),K=(-9,1),L=(-7,1),M=(-5,1),N=(-3,1),O=(-5,3),P=(-7,3),Aa=(-1,7),Ba=(-1,9),Ca=(-1,11),Da=(-3,11),Ea=(-5,11),Fa=(-7,11),Ga=(-9,11),Ha=(-11,11),Ia=(-11,9),Ja=(-11,7),Ka=(-9,7),La=(-7,7),Ma=(-5,7),Na=(-3,7),Oa=(-5,9),Pa=(-7,9); draw(B--C--H--J--N^^B--I^^D--N^^E--M^^F--L^^G--K); draw(Aa--Ca--Ha--Ja--Aa^^Ba--Ia^^Da--Na^^Ea--Ma^^Fa--La^^Ga--Ka); [/asy][/asy] [asy][asy] defaultpen(linewidth(0.4)+fontsize(10));size(50); pair A=(-1,1),B=(-1,3),C=(-1,5),D=(-3,5),E=(-5,5),F=(-7,5),G=(-9,5),H=(-11,5),I=(-11,3),J=(-11,1),K=(-9,1),L=(-7,1),M=(-5,1),N=(-3,1),O=(-5,3),P=(-7,3),Aa=(-1,7),Ba=(-1,9),Ca=(-1,11),Da=(-3,11),Ea=(-5,11),Fa=(-7,11),Ga=(-9,11),Ha=(-11,11),Ia=(-11,9),Ja=(-11,7),Ka=(-9,7),La=(-7,7),Ma=(-5,7),Na=(-3,7),Oa=(-5,9),Pa=(-7,9); draw(B--Ca--Ea--M--N^^B--O^^C--E^^Aa--Ma^^Ba--Oa^^Da--N); draw(L--Fa--Ha--J--L^^Ga--K^^P--I^^F--H^^Ja--La^^Pa--Ia); [/asy][/asy] Here is a fixed $9\times 18$ grid table. Find the number of ways to cover the grid table completely with 18 banners.
July 31st - Day 2
Let $S=\{1928,1929,1930,\cdots,1949\}.$ We call one of $S$’s subset $M$ is a red subset, if the sum of any two different elements of $M$ isn’t divided by $4.$ Let $x,y$ be the number of the red subsets of $S$ with $4$ and $5$ elements,respectively. Determine which of $x,y$ is greater and prove that.
Let $a,b,c$ be the lengths of the sides of a given triangle.If positive reals $x,y,z$ satisfy $x+y+z=1,$ find the maximum of $axy+byz+czx.$
Let $ABCD$ be a given convex quadrilateral in a plane. Prove that there exist a line with four different points $P,Q,R,S$ on it and a square $A’B’C’D’$ such that $P$ lies on both line $AB$ and $A’B’,$ $Q$ lies on both line $BC$ and $B’C’,$ $R$ lies on both line $CD$ and $C’D’,$ $S$ lies on both line $DA$ and $D’A’.$
For positive integer $x>1$, define set $S_x$ as $$S_x=\{p^\alpha|p \textup{ is one of the prime divisor of }x,\alpha \in \mathbb{N},p^\alpha|x,\alpha \equiv v_p(x)(\textup{mod} 2)\},$$where $v_p(n)$ is the power of prime divisor $p$ in positive integer $n.$ Let $f(x)$ be the sum of all the elements of $S_x$ when $x>1,$ and $f(1)=1.$ Let $m$ be a given positive integer, and the sequence $a_1,a_2,\cdots,a_n,\cdots$ satisfy that for any positive integer $n>m,$ $a_{n+1}=\max\{ f(a_n),f(a_{n-1}+1),\cdots,f(a_{n-m}+m)\}.$ Prove that (1)there exists constant $A,B(0<A<1),$ such that when positive integer $x$ has at least two different prime divisors, $f(x)<Ax+B$ holds; (2)there exists positive integer $Q$, such that for any positive integer $n,a_n<Q.$
Grade 11
July 30th - Day 1
Let $[a]$ represent the largest integer less than or equal to $a$, for any real number $a$. Let $\{a\} = a - [a]$. Are there positive integers $m,n$ and $n+1$ real numbers $x_0,x_1,\hdots,x_n$ such that $x_0=428$, $x_n=1928$, $\frac{x_{k+1}}{10} = \left[\frac{x_k}{10}\right] + m + \left\{\frac{x_k}{5}\right\}$ holds? Justify your answer.
$ABCD$ is a parallelogram with $\angle BAD \neq 90$. Circle centered at $A$ radius $BA$ denoted as $\omega _1$ intersects the extended side of $AB,CB$ at points $E,F$ respectively. Suppose the circle centered at $D$ with radius $DA$, denoted as $\omega _2$, intersects $AD,CD$ at points $M,N$ respectively. Suppose $EN,FM$ intersects at $G$, $AG$ intersects $ME$ at point $T$. $MF$ intersects $\omega _1$ at $Q \neq F$, and $EN$ intersects $\omega _2$ at $P \neq N$. Prove that $G,P,T,Q$ concyclic.
$n$ symbols line up in a row, numbered as $1,2,...,n$ from left to right. Delete every symbol with squared numbers. Renumber the rest from left to right. Repeat the process until all $n$ symbols are deleted. Let $f(n)$ be the initial number of the last symbol deleted. Find $f(n)$ in terms of $n$ and find $f(2019)$.
Let $X$ be a $5\times 5$ matrix with each entry be $0$ or $1$. Let $x_{i,j}$ be the $(i,j)$-th entry of $X$ ($i,j=1,2,\hdots,5$). Consider all the $24$ ordered sequence in the rows, columns and diagonals of $X$ in the following: \begin{align*} &(x_{i,1}, x_{i,2},\hdots,x_{i,5}),\ (x_{i,5},x_{i,4},\hdots,x_{i,1}),\ (i=1,2,\hdots,5) \\ &(x_{1,j}, x_{2,j},\hdots,x_{5,j}),\ (x_{5,j},x_{4,j},\hdots,x_{1,j}),\ (j=1,2,\hdots,5) \\ &(x_{1,1},x_{2,2},\hdots,x_{5,5}),\ (x_{5,5},x_{4,4},\hdots,x_{1,1}) \\ &(x_{1,5},x_{2,4},\hdots,x_{5,1}),\ (x_{5,1},x_{4,2},\hdots,x_{1,5}) \end{align*}Suppose that all of the sequences are different. Find all the possible values of the sum of all entries in $X$.
July 31st - Day 2
For positive integer n, define $a_n$ as the number of the triangles with integer length of every side and the length of the longest side being $2n.$ (1) Find $a_n$ in terms of $n;$ (2)If the sequence $\{ b_n\}$ satisfying for any positive integer $n,$ $\sum_{k=1}^n(-1)^{n-k}\binom {n}{k} b_k=a_n.$ Find the number of positive integer $n$ satisfying that $b_n\leq 2019a_n.$
In $\triangle ABC$, $AB>AC$, the bisectors of $\angle ABC, \angle ACB$ meet sides $AC,AB$ at $D,E$ respectively. The tangent at $A$ to the circumcircle of $\triangle ABC$ intersects $ED$ extended at $P$. Suppose that $AP=BC$. Prove that $BD\parallel CP$.
Amy and Bob choose numbers from $0,1,2,\cdots,81$ in turn and Amy choose the number first. Every time the one who choose number chooses one number from the remaining numbers. When all $82$ numbers are chosen, let $A$ be the sum of all the numbers Amy chooses, and let $B$ be the sum of all the numbers Bob chooses. During the process, Amy tries to make $\gcd(A,B)$ as great as possible, and Bob tries to make $\gcd(A,B)$ as little as possible. Suppose Amy and Bob take the best strategy of each one, respectively, determine $\gcd(A,B)$ when all $82$ numbers are chosen.
For positive integer $x>1$, define set $S_x$ as $$S_x=\{p^\alpha|p \textup{ is one of the prime divisor of }x,\alpha \in \mathbb{N},p^\alpha|x,\alpha \equiv v_p(x)(\textup{mod} 2)\},$$where $v_p(n)$ is the power of prime divisor $p$ in positive integer $n.$ Let $f(x)$ be the sum of all the elements of $S_x$ when $x>1,$ and $f(1)=1.$ Let $m$ be a given positive integer, and the sequence $a_1,a_2,\cdots,a_n,\cdots$ satisfy that for any positive integer $n>m,$ $a_{n+1}=\max\{ f(a_n),f(a_{n-1}+1),\cdots,f(a_{n-m}+m)\}.$ Prove that (1)there exists constant $A,B(0<A<1),$ such that when positive integer $x$ has at least two different prime divisors, $f(x)<Ax+B$ holds; (2)there exists positive integer $N,l$, such that for any positive integer $n\geq N ,a_{n+l}=a_n$ holds.