2015 Balkan MO Shortlist

Algebra

A1

If ${a, b}$ and $c$ are positive real numbers, prove that \begin{align*} a ^ 3b ^ 6 + b ^ 3c ^ 6 + c ^ 3a ^ 6 + 3a ^ 3b ^ 3c ^ 3 &\ge{ abc \left (a ^ 3b ^ 3 + b ^ 3c ^ 3 + c ^ 3a ^ 3 \right) + a ^ 2b ^ 2c ^ 2 \left (a ^ 3 + b ^ 3 + c ^ 3 \right)}. \end{align*} (Montenegro).

A2

Let $a,b,c$ be sidelengths of a triangle and $r,R,s$ be the inradius, the circumradius and the semiperimeter respectively of the same triangle. Prove that: $$\frac{1}{a + b} + \frac{1}{a + c} + \frac{1}{b + c} \leq \frac{r}{16Rs}+\frac{s}{16Rr} + \frac{11}{8s}$$ (Albania)

A3

Let a$,b,c$ be sidelengths of a triangle and $m_a,m_b,m_c$ the medians at the corresponding sides. Prove that $$m_a\left(\frac{b}{a}-1\right)\left(\frac{c}{a}-1\right)+ m_b\left(\frac{a}{b}-1\right)\left(\frac{c}{b}-1\right) +m_c\left(\frac{a}{c}-1\right)\left(\frac{b}{c}-1\right)\geq 0.$$ (FYROM)

A4

Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that $$ (x+y)f(2yf(x)+f(y))=x^{3}f(yf(x)), \ \ \ \forall x,y\in \mathbb{R}^{+}.$$ (Albania)

A5

Let $m, n$ be positive integers and $a, b$ positive real numbers different from $1$ such thath $m > n$ and $$\frac{a^{m+1}-1}{a^m-1} = \frac{b^{n+1}-1}{b^n-1} = c$$. Prove that $a^m c^n > b^n c^{m}$ (Turkey)

A6

For a polynomials $ P\in \mathbb{R}[x]$, denote $f(P)=n$ if $n$ is the smallest positive integer for which is valid $$(\forall x\in \mathbb{R})(\underbrace{P(P(\ldots P}_{n}(x))\ldots )>0),$$and $f(P)=0$ if such n doeas not exist. Exists polyomial $P\in \mathbb{R}[x]$ of degree $2014^{2015}$ such that $f(P)=2015$? (Serbia)

Combinatorics

C1

A committee of $3366$ film critics are voting for the Oscars. Every critic voted just an actor and just one actress. After the voting, it was found that for every positive integer $n \in \left \{1, 2, \ldots, 100 \right \}$, there is some actor or some actress who was voted exactly $n$ times. Prove that there are two critics who voted the same actor and the same actress. (Cyprus)

C2

Isaak and Jeremy play the following game. Isaak says to Jeremy that he thinks a few $2^n$ integers $k_1,..,k_{2^n}$. Jeremy asks questions of the form: ''Is it true that $k_i<k_j$ ?'' in which Isaak answers by always telling the truth. After $n2^{n-1}$ questions, Jeramy must decide whether numbers of Isaak are all distinct each other or not. Prove that Jeremy has bo way to be ''sure'' for his final decision. (UK)

C3

A chessboard $1000 \times 1000$ is covered by dominoes $1 \times 10$ that can be rotated. We don't know which is the cover, but we are looking for it. For this reason, we choose a few $N$ cells of the chessboard, for which we know the position of the dominoes that cover them. Which is the minimum $N$ such that after the choice of $N$ and knowing the dominoed that cover them, we can be sure and for the rest of the cover? (Bulgaria)

Geometry

G1

In an acute angled triangle $ABC$ , let $BB' $ and $CC'$ be the altitudes. Ray $C'B'$ intersects the circumcircle at $B''$ andl let $\alpha_A$ be the angle $\widehat{ABB''}$. Similarly are defined the angles $\alpha_B$ and $\alpha_C$. Prove that $$\displaystyle\sin \alpha _A \sin \alpha _B \sin \alpha _C\leq \frac{3\sqrt{6}}{32}$$(Romania)

G2

Let $ABC$ be a triangle with circumcircle $\omega$ . Point $D$ lies on the arc $BC$ of $\omega$ and is different than $B,C$ and the midpoint of arc $BC$. Tangent of $\Gamma$ at $D$ intersects lines $BC$, $CA$, $AB$ at $A',B',C'$, respectively. Lines $BB'$ and $CC'$ intersect at $E$. Line $AA'$ intersects the circle $\omega$ again at $F$. Prove that points $D,E,F$ are collinear. (Saudi Arabia)

G3

A set of points of the plane is called obtuse-angled if every three of it's points are not collinear and every triangle with vertices inside the set has one angle $ >91^o$. Is it correct that every finite obtuse-angled set can be extended to an infinite obtuse-angled set? (UK)

G4

Let $\triangle{ABC}$ be a scalene triangle with incentre $I$ and circumcircle $\omega$. Lines $AI, BI, CI$ intersect $\omega$ for the second time at points $D, E, F$, respectively. The parallel lines from $I$ to the sides $BC, AC, AB$ intersect $EF, DF, DE$ at points $K, L, M$, respectively. Prove that the points $K, L, M$ are collinear. (Cyprus)

G5

Quadrilateral $ABCD$ is given with $AD \nparallel BC$. The midpoints of $AD$ and $BC$ are denoted by $M$ and $N$, respectively. The line $MN$ intersects the diagonals $AC$ and $BD$ in points $K$ and $L$, respectively. Prove that the circumcircles of the triangles $AKM$ and $BNL$ have common point on the line $AB$.( Proposed by Emil Stoyanov )

G6

Let $AB$ be a diameter of a circle $(\omega)$ with centre $O$. From an arbitrary point $M$ on $AB$ such that $MA < MB$ we draw the circles $(\omega_1)$ and $(\omega_2)$ with diameters $AM$ and $BM$ respectively. Let $CD$ be an exterior common tangent of $(\omega_1), (\omega_2)$ such that $C$ belongs to $(\omega_1)$ and $D$ belongs to $(\omega_2)$. The point $E$ is diametrically opposite to $C$ with respect to $(\omega_1)$ and the tangent to $(\omega_1)$ at the point $E$ intersects $(\omega_2)$ at the points $F, G$. If the line of the common chord of the circumcircles of the triangles $CED$ and $CFG$ intersects the circle $(\omega)$ at the points $K, L$ and the circle $(\omega_2)$ at the point $N$ (with $N$ closer to $L$), then prove that $KC = NL$.

G7

Let scalene triangle $ABC$ have orthocentre $H$ and circumcircle $\Gamma$. $AH$ meets $\Gamma$ at $D$ distinct from $A$. $BH$ and $CH$ meet $CA$ and $AB$ at $E$ and $F$ respectively, and $EF$ meets $BC$ at $P$. The tangents to $\Gamma$ at $B$ and $C$ meet at $T$. Show that $AP$ and $DT$ are concurrent on the circumcircle of $AFE$.

Number Theory

N1

Let $d$ be an even positive integer. John writes the numbers $1^2 ,3^2 ,\ldots,(2n-1)^2 $ on the blackboard and then chooses three of them, let them be ${a_1}, {a_2}, {a_3}$, erases them and writes the number $1+ \displaystyle\sum_{1\le i<j\leq 3} |{a_i} -{a_j}|$ He continues until two numbers remain written on on the blackboard. Prove that the sum of squares of those two numbers is different than the numbers $1^2 ,3^2 ,\ldots,(2n-1)^2$. (Albania)

N2

Sequence $(a_n)_{n\geq 0}$ is defined as $a_{0}=0, a_1=1, a_2=2, a_3=6$, and $ a_{n+4}=2a_{n+3}+a_{n+2}-2a_{n+1}-a_n, n\geq 0$. Prove that $n^2$ divides $a_n$ for infinite $n$. (Romania)

N3

Let $a$ be a positive integer. For all positive integer n, we define $ a_n=1+a+a^2+\ldots+a^{n-1}. $ Let $s,t$ be two different positive integers with the following property: If $p$ is prime divisor of $s-t$, then $p$ divides $a-1$. Prove that number $\frac{a_{s}-a_{t}}{s-t}$ is an integer. (FYROM)

N4

Find all pairs of positive integers $(x,y)$ with the following property: If $a,b$ are relative prime and positive divisors of $ x^3 + y^3$, then $a+b - 1$ is divisor of $x^3+y^3$. (Cyprus)

N5

For a positive integer $s$, denote with $v_2(s)$ the maximum power of $2$ that divides $s$. Prove that for any positive integer $m$ that: $$v_2\left(\prod_{n=1}^{2^m}\binom{2n}{n}\right)=m2^{m-1}+1.$$ (FYROM)

N6

Prove that among $20$ consecutive positive integers there is an integer $d$ such that for every positive integer $n$ the following inequality holds $$n \sqrt{d} \left\{n \sqrt {d} \right \} > \dfrac{5}{2}$$ where by $\left \{x \right \}$ denotes the fractional part of the real number $x$. The fractional part of the real number $x$ is defined as the difference between the largest integer that is less than or equal to $x$ to the actual number $x$. (Serbia)

N7

Positive integer $m$ shall be called anagram of positive $n$ if every digit $a$ appears as many times in the decimal representation of $m$ as it appears in the decimal representation of $n$ also. Is it possible to find $4$ different positive integers such that each of the four to be anagram of the sum of the other $3$? (Bulgaria)