Let $x,y,z$ be positive real numbers . Prove: $\frac{x}{\sqrt{\sqrt[4]{y}+\sqrt[4]{z}}}+\frac{y}{\sqrt{\sqrt[4]{z}+\sqrt[4]{x}}}+\frac{z}{\sqrt{\sqrt[4]{x}+\sqrt[4]{y}}}\geq \frac{\sqrt[4]{(\sqrt{x}+\sqrt{y}+\sqrt{z})^7}}{\sqrt{2\sqrt{27}}}$
2018 JBMO Shortlist
Algebra
Find the maximum positive integer $k$ such that for any positive integers $m,n$ such that $m^3+n^3>(m+n)^2$, we have $$m^3+n^3\geq (m+n)^2+k$$ Proposed by Dorlir Ahmeti, Albania
Let $a,b,c$ be positive real numbers . Prove that$$ \frac{1}{ab(b+1)(c+1)}+\frac{1}{bc(c+1)(a+1)}+\frac{1}{ca(a+1)(b+1)}\geq\frac{3}{(1+abc)^2}.$$
Let $k > 1, n > 2018$ be positive integers, and let $n$ be odd. The nonzero rational numbers $x_1,x_2,\ldots,x_n$ are not all equal and satisfy $$x_1+\frac{k}{x_2}=x_2+\frac{k}{x_3}=x_3+\frac{k}{x_4}=\ldots=x_{n-1}+\frac{k}{x_n}=x_n+\frac{k}{x_1}$$Find: a) the product $x_1 x_2 \ldots x_n$ as a function of $k$ and $n$ b) the least value of $k$, such that there exist $n,x_1,x_2,\ldots,x_n$ satisfying the given conditions.
Let a$,b,c,d$ and $x,y,z,t$ be real numbers such that $0\le a,b,c,d \le 1$ , $x,y,z,t \ge 1$ and $a+b+c+d +x+y+z+t=8$. Prove that $a^2+b^2+c^2+d^2+x^2+y^2+z^2+t^2\le 28$
For $a,b,c$ positive real numbers such that $ab+bc+ca=3$, prove: $ \frac{a}{\sqrt{a^3+5}}+\frac{b}{\sqrt{b^3+5}}+\frac{c}{\sqrt{c^3+5}} \leq \frac{\sqrt{6}}{2}$ Proposed by Dorlir Ahmeti, Albania
Let $A$ be a set of positive integers satisfying the following : $a.)$ If $n \in A$ , then $n \le 2018$. $b.)$ If $S \subset A$ such that $|S|=3$, then there exists $m,n \in S$ such that $|n-m| \ge \sqrt{n}+\sqrt{m}$ What is the maximum cardinality of $A$ ?
Combinatorics
A set $S$ is called neighbouring if it has the following two properties: a) $S$ has exactly four elements b) for every element $x$ of $S$, at least one of the numbers $x - 1$ or $x+1$ belongs to $S$. Find the number of all neighbouring subsets of the set $\{1,2,... ,n\}$.
Find max number $n$ of numbers of three digits such that : 1. Each has digit sum $9$ 2. No one contains digit $0$ 3. Each $2$ have different unit digits 4. Each $2$ have different decimal digits 5. Each $2$ have different hundreds digits
The cells of a $8 \times 8$ table are initially white. Alice and Bob play a game. First Alice paints $n$ of the fields in red. Then Bob chooses $4$ rows and $4$ columns from the table and paints all fields in them in black. Alice wins if there is at least one red field left. Find the least value of $n$ such that Alice can win the game no matter how Bob plays.
Geometry
Let $H$ be the orthocentre of an acute triangle $ABC$ with $BC > AC$, inscribed in a circle $\Gamma$. The circle with centre $C$ and radius $CB$ intersects $\Gamma$ at the point $D$, which is on the arc $AB$ not containing $C$. The circle with centre $C$ and radius $CA$ intersects the segment $CD$ at the point $K$. The line parallel to $BD$ through $K$, intersects $AB$ at point $L$. If $M$ is the midpoint of $AB$ and $N$ is the foot of the perpendicular from $H$ to $CL$, prove that the line $MN$ bisects the segment $CH$.
Let $ABC$ be a right angled triangle with $\angle A = 90^o$ and $AD$ its altitude. We draw parallel lines from $D$ to the vertical sides of the triangle and we call $E, Z$ their points of intersection with $AB$ and $AC$ respectively. The parallel line from $C$ to $EZ$ intersects the line $AB$ at the point $N$. Let $A' $ be the symmetric of $A$ with respect to the line $EZ$ and $I, K$ the projections of $A'$ onto $AB$ and $AC$ respectively. If $T$ is the point of intersection of the lines $IK$ and $DE$, prove that $\angle NA'T = \angle ADT$.
Let $\triangle ABC$ and $A'$,$B'$,$C'$ the symmetrics of vertex over opposite sides.The intersection of the circumcircles of $\triangle ABB'$ and $\triangle ACC'$ is $A_1$.$B_1$ and $C_1$ are defined similarly.Prove that lines $AA_1$,$BB_1$ and $CC_1$ are concurent.
Let $ABC$ be a triangle with side-lengths $a, b, c$, inscribed in a circle with radius $R$ and let $I$ be ir's incenter. Let $P_1, P_2$ and $P_3$ be the areas of the triangles $ABI, BCI$ and $CAI$, respectively. Prove that $$\frac{R^4}{P_1^2}+\frac{R^4}{P_2^2}+\frac{R^4}{P_3^2}\ge 16$$
Given a rectangle $ABCD$ such that $AB = b > 2a = BC$, let $E$ be the midpoint of $AD$. On a line parallel to $AB$ through point $E$, a point $G$ is chosen such that the area of $GCE$ is $$(GCE)= \frac12 \left(\frac{a^3}{b}+ab\right)$$Point $H$ is the foot of the perpendicular from $E$ to $GD$ and a point $I$ is taken on the diagonal $AC$ such that the triangles $ACE$ and $AEI$ are similar. The lines $BH$ and $IE$ intersect at $K$ and the lines $CA$ and $EH$ intersect at $J$. Prove that $KJ \perp AB$.
Let $XY$ be a chord of a circle $\Omega$, with center $O$, which is not a diameter. Let $P, Q$ be two distinct points inside the segment $XY$, where $Q$ lies between $P$ and $X$. Let $\ell$ the perpendicular line drawn from $P$ to the diameter which passes through $Q$. Let $M$ be the intersection point of $\ell$ and $\Omega$, which is closer to $P$. Prove that $$ MP \cdot XY \ge 2 \cdot QX \cdot PY$$
Number Theory
Find all integers $m$ and $n$ such that the fifth power of $m$ minus the fifth power of $n$ is equal to $16mn$.
Find all ordered pairs of positive integers $(m,n)$ such that : $125*2^n-3^m=271$
Find all four-digit positive integers $\overline{abcd}=10^3a+10^2b+10c+d$ $(a\ne0)$ such that: $\overline{abcd} =a^{a+b+c+d}-a^{-a+b-c+d}+a$
Prove that there exist infinitely many positive integers $n$ such that $\frac{4^n+2^n+1}{n^2+n+1}$ is a positive integer.